Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Appl Environ Microbiol ; 90(5): e0029424, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38624200

RESUMO

Aspergillus oryzae spores, when sprinkled onto steamed rice and allowed to propagate, are referred to as rice "koji." Agmatine, a natural polyamine derived from arginine through the action of arginine decarboxylase (ADC), is abundantly produced by solid state-cultivated rice koji of A. oryzae RIB40 under low pH conditions, despite the apparent absence of ADC orthologs in its genome. Mass spectrometry imaging revealed that agmatine was accumulated inside rice koji at low pH conditions, where arginine was distributed. ADC activity was predominantly observed in substrate mycelia and minimally in aerial mycelia. Natural ADC was isolated from solid state-cultivated A. oryzae rice koji containing substrate mycelia, using ammonium sulfate fractionation, ion exchange, and gel-filtration chromatography. The purified protein was subjected to sodium dodecyl sulfate poly-acrylamide gel electrophoresis (SDS-PAGE), and the detected peptide band was digested for identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The gene AO090102000327 of strain RIB40 was identified, previously annotated as phosphatidylserine decarboxylase (PSD), and encoded a 483-amino acid peptide. Recombinant protein encoded by AO090102000327 was expressed in Escherichia coli cells cultivated at 20°C, resulting in the detection of 49 kDa and 5 kDa peptides. The protein exhibited pyruvoyl-dependent decarboxylase activity, favoring arginine over ornithine and showing no activity with phosphatidylserine. The gene was designated Ao-adc1. Ao-ADC1 expression in rice koji at pH 4-6 was confirmed through western blotting using the anti-Ao-ADC1 serum. These findings indicate that Ao-adc1 encodes arginine decarboxylase involved in agmatine production.IMPORTANCEGene AO090102000327 in A. oryzae RIB40, previously annotated as a PSD, falls into a distinct clade when examining the phylogenetic distribution of PSDs. Contrary to the initial PSD annotation, our analysis indicates that the protein encoded by AO090102000327 is expressed in the substrate mycelia area of solid state-cultivated A. oryzae rice koji and functions as an arginine decarboxylase (ADC). The clade to which Ao-ADC1 belongs includes three other Ao-ADC1 paralogs (AO090103000445, AO090701000800, and AO090701000802) that presumably encode ADC rather than PSDs. Regarding PSD, AO090012000733 and AO090005001124 were speculated to be nonmitochondrial and mitochondrial PSDs in A. oryzae RIB40, respectively.


Assuntos
Aspergillus oryzae , Carboxiliases , Proteínas Fúngicas , Oryza , Aspergillus oryzae/genética , Aspergillus oryzae/enzimologia , Carboxiliases/genética , Carboxiliases/metabolismo , Carboxiliases/química , Oryza/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Agmatina/metabolismo
2.
NPJ Syst Biol Appl ; 10(1): 16, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374087

RESUMO

Biochemical network visualization is one of the essential technologies for mechanistic interpretation of omics data. In particular, recent advances in multi-omics measurement and analysis require the development of visualization methods that encompass multiple omics data. Visualization in 2.5 dimension (2.5D visualization), which is an isometric view of stacked X-Y planes, is a convenient way to interpret multi-omics/trans-omics data in the context of the conventional layouts of biochemical networks drawn on each of the stacked omics layers. However, 2.5D visualization of trans-omics networks is a state-of-the-art method that primarily relies on time-consuming human efforts involving manual drawing. Here, we present an R Bioconductor package 'transomics2cytoscape' for automated visualization of 2.5D trans-omics networks. We confirmed that transomics2cytoscape could be used for rapid visualization of trans-omics networks presented in published papers within a few minutes. Transomics2cytoscape allows for frequent update/redrawing of trans-omics networks in line with the progress in multi-omics/trans-omics data analysis, thereby enabling network-based interpretation of multi-omics data at each research step. The transomics2cytoscape source code is available at https://github.com/ecell/transomics2cytoscape .


Assuntos
Multiômica , Software
3.
J Fungi (Basel) ; 10(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38392785

RESUMO

DNA-binding transcription factors are broadly characterized as proteins that bind to specific sequences within genomic DNA and modulate the expression of downstream genes. This study focused on KojR, a transcription factor involved in the metabolism of kojic acid, which is an organic acid synthesized in Aspergillus oryzae and is known for its tyrosinase-inhibitory properties. However, the regulatory mechanism underlying KojR-mediated kojic acid synthesis remains unclear. Hence, we aimed to obtain a comprehensive identification of KojR-associated genes using genomic systematic evolution of ligands by exponential enrichment with high-throughput DNA sequencing (gSELEX-Seq) and RNA-Seq. During the genome-wide exploration of KojR-binding sites via gSELEX-Seq and identification of KojR-dependent differentially expressed genes (DEGs) using RNA-Seq, we confirmed that KojR preferentially binds to 5'-CGGCTAATGCGG-3', and KojR directly regulates kojT, as was previously reported. We also observed that kojA expression, which may be controlled by KojR, was significantly reduced in a ΔkojR strain. Notably, no binding of KojR to the kojA promoter region was detected. Furthermore, certain KojR-dependent DEGs identified in the present study were associated with enzymes implicated in the carbon metabolic pathway of A. oryzae. This strongly indicates that KojR plays a central role in carbon metabolism in A. oryzae.

4.
Indian J Hematol Blood Transfus ; 40(1): 161-165, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38312190

RESUMO

Rapid fibrinogen (Fbg) evaluation is important in patients with massive bleeding during severe trauma and those undergoing major surgery. However, there are only a few studies on the point-of-care Fbg analyzer. In this study, we aimed to investigate the accuracy of Fbg level measured using CG02N, with whole blood contained in lithium-heparinized syringes with two different concentrations of heparin. Blood samples were collected in lithium-heparinized tubes, namely PREZA-PAK®II (low-dose heparin group [LG], 7 IU/mL) and Pro-Vent® Plus (high-dose heparin group [HG], 70.5 IU/mL). The Fbg levels in LG and HG were compared with those of citrated plasma Fbg (standard-Fbg). Strong correlations with respect to the Fbg level were observed between standard-Fbg and LG or HG (r = 0.968, p < 0.0001; r = 0.970, p < 0.0001, respectively). We demonstrated that the Fbg level in whole-blood samples was accurately assessed by CG02N and not affected by low- or high-dose heparin.

5.
J Intensive Care ; 12(1): 5, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38273416

RESUMO

BACKGROUND: Chest computed tomography findings are helpful for understanding the pathophysiology of severe acute respiratory distress syndrome (ARDS). However, there is no large, multicenter, chest computed tomography registry for patients requiring veno-venous extracorporeal membrane oxygenation (V-V ECMO). The aim of this study was to describe chest computed tomography findings at V-V ECMO initiation and to evaluate the association between the findings and outcomes in severe ARDS. METHODS: This multicenter, retrospective cohort study enrolled patients with severe ARDS on V-V ECMO, who were admitted to the intensive care units of 24 hospitals in Japan between January 1, 2012, and December 31, 2022. RESULTS: The primary outcome was 90-day in-hospital mortality. The secondary outcomes were the successful liberation from V-V ECMO and the values of static lung compliance. Among the 697 registry patients, of the 582 patients who underwent chest computed tomography at V-V ECMO initiation, 394 survived and 188 died. Multivariate Cox regression showed that traction bronchiectasis and subcutaneous emphysema increased the risk of 90-day in-hospital mortality (hazard ratio [95% confidence interval] 1.77 [1.19-2.63], p = 0.005 and 1.97 [1.02-3.79], p = 0.044, respectively). The presence of traction bronchiectasis was also associated with decreased successful liberation from V-V ECMO (odds ratio: 0.27 [0.14-0.52], p < 0.001). Lower static lung compliance was associated with some chest computed tomography findings related to changes outside of pulmonary opacity, but not with the findings related to pulmonary opacity. CONCLUSIONS: Traction bronchiectasis and subcutaneous emphysema increased the risk of 90-day in-hospital mortality in patients with severe ARDS who required V-V ECMO.

6.
J Infect Chemother ; 30(6): 499-503, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38097039

RESUMO

INTRODUCTION: Acute respiratory distress syndrome (ARDS) due to severe coronavirus disease 2019 (COVID-19) pneumonia is associated with a high incidence of ventilator-associated pneumonia (VAP). We aimed to evaluate the epidemiology of VAP associated with severe COVID-19 pneumonia. METHODS: This retrospective observational study recruited patients with COVID-19-associated ARDS admitted to our center from April 1, 2020, to September 30, 2021. The primary outcome was the survival-to-discharge rate. The secondary outcomes were the VAP rate, time to VAP, length of ICU stay, length of ventilator support, and isolated bacteria. RESULTS: Sixty-eight patients were included in this study; 23 developed VAP. The survival-to-discharge rate was 60.9 % in the VAP group and 84.4 % in the non-VAP group. The median time to VAP onset was 16 days. The median duration of ventilator support and of ICU stay were higher in the VAP group than in the non-VAP group. The VAP rate was 33.8 %. The most common isolated species was Stenotrophomonas maltophilia. On admission, carbapenems were used in a maximum number of cases (75 %). Furthermore, the median body mass index (BMI) was lower and the median sequential organ failure assessment (SOFA) score on admission was higher in the VAP group than in the non-VAP group. CONCLUSIONS: The survival-to-discharge rate in VAP patients was low. Moreover, VAP patients tended to have long ICU stays, low BMI, and high SOFA scores on admission. Unusually, S. maltophilia was the most common isolated bacteria, which may be related to the frequent use of carbapenems.


Assuntos
COVID-19 , Pneumonia Associada à Ventilação Mecânica , Síndrome do Desconforto Respiratório , Humanos , Pneumonia Associada à Ventilação Mecânica/epidemiologia , Pneumonia Associada à Ventilação Mecânica/microbiologia , COVID-19/epidemiologia , COVID-19/complicações , Bactérias , Prognóstico , Carbapenêmicos/uso terapêutico , Unidades de Terapia Intensiva , Respiração Artificial/efeitos adversos
7.
Mol Biol Cell ; 34(13): ar127, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37756125

RESUMO

Transglutaminase (TG) is a ubiquitous enzyme that crosslinks substrates. In humans, TG participates in blood clotting and wound healing. However, the functions related to the cellular protection of microbial TG are unknown. In filamentous fungi, we previously identified SppB, which contains the transglutaminase core (TGc) domain and functions in hyphal protection at the septal pore upon wounding. Here, we further analyzed the cytokinesis-related protein Cyk3 and peptide N-glycanase Png1, as both contain the TGc domain. All three proteins exhibited functional importance in wound-related hyphal protection at the septal pore. Upon wounding, SppB and AoPng1 accumulated at the septal pore, whereas AoCyk3 and AoPng1 normally localized around the septal pore. The putative Cys-His-Asp catalytic triad of SppB is conserved with the human TGc domain-containing kyphoscoliosis peptidase. Catalytic triad disruptive mutants of SppB and AoCyk3 exhibited septal pore plugging defects. Similar to other TGs, SppB underwent wound-induced truncation of the N-terminal region. Notably, TG activity was detected in vivo at the septal pore of wounded hyphae using a fluorescent-labeled substrate; however, the activity was inhibited by the TG inhibitor cystamine. Our study suggests a conserved role for TGc domain-containing proteins in wound-related protection in fungi, similar to that in humans.


Assuntos
Proteínas Fúngicas , Hifas , Humanos , Proteínas Fúngicas/metabolismo , Transglutaminases/metabolismo , Fungos/metabolismo , Citocinese
8.
Biosci Biotechnol Biochem ; 87(10): 1236-1248, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37500264

RESUMO

Aspergillus sojae has traditionally been used in soy sauce brewing. Genetic modification techniques have been established in A. sojae, but it is difficult to apply them to various industrial strains. Although we have previously developed a CRISPR/Cpf1 system for genetic modification of A. sojae, another genome editing system was required for versatile modification. In addition, repetitive genetic modification using the CRISPR system has not been established in A. sojae. In this study, we demonstrated mutagenesis, gene deletion/integration, and large deletion of a chromosomal region in A. sojae using the CRISPR/Cas9 system. We also successfully performed repetitive genetic modification using a method that involved forced recycling of genome-editing plasmids. Moreover, we demonstrated that the effects of genetic modification related to soy sauce brewing differed among A. sojae industrial strains. These results showed that our technique of using the CRISPR/Cas9 system is a powerful tool for genetic modification in A. sojae.


Assuntos
Edição de Genes , Alimentos de Soja , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Aspergillus/genética
9.
Nat Commun ; 14(1): 1418, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932089

RESUMO

Multicellular filamentous fungi have septal pores that allow cytoplasmic exchange, and thus connectivity, between neighboring cells in the filament. Hyphal wounding and other stress conditions induce septal pore closure to minimize cytoplasmic loss. However, the composition of the septal pore and the mechanisms underlying its function are not well understood. Here, we set out to identify new septal components by determining the subcellular localization of 776 uncharacterized proteins in a multicellular ascomycete, Aspergillus oryzae. The set of 776 uncharacterized proteins was selected on the basis that their genes were present in the genomes of multicellular, septal pore-bearing ascomycetes (three Aspergillus species, in subdivision Pezizomycotina) and absent/divergent in the genomes of septal pore-lacking ascomycetes (yeasts). Upon determining their subcellular localization, 62 proteins were found to localize to the septum or septal pore. Deletion of the encoding genes revealed that 23 proteins are involved in regulating septal pore plugging upon hyphal wounding. Thus, this study determines the subcellular localization of many uncharacterized proteins in A. oryzae and, in particular, identifies a set of proteins involved in septal pore function.


Assuntos
Ascomicetos , Proteínas Fúngicas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifas/metabolismo , Citoplasma/metabolismo , Ascomicetos/metabolismo , Proteínas de Fluorescência Verde/metabolismo
10.
Int J Hematol ; 117(6): 845-855, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36920687

RESUMO

The purpose of this study was to classify patients with severe COVID-19 into more detailed risk groups using coagulation/fibrinolysis, inflammation/immune response, and alveolar/myocardial damage biomarkers, as well as to identify prognostic markers for these patients. These biomarkers were measured every day for eight intensive care unit days in 54 adult patients with severe COVID-19. The patients were classified into survivor (n = 40) and non-survivor (n = 14) groups. Univariate and multivariate analyses showed that the combined measurement of platelet count and presepsin concentrations may be the most valuable for predicting in-hospital death, and receiver operating characteristic curve analysis further confirmed this result (area under the curve = 0.832). Patients were consequently classified into three groups (high-, medium-, and low-risk) on the basis of their cutoff values (platelet count 53 × 103/µL, presepsin 714 pg/mL). The Kaplan-Meier curve for 90-day survival by each group showed that the 90-day mortality rate significantly increased as risk level increased (P < 0.01 by the log-rank test). Daily combined measurement of platelet count and presepsin concentration may be useful for predicting in-hospital death and classifying patients with severe COVID-19 into more detailed risk groups.


Assuntos
COVID-19 , Adulto , Humanos , Prognóstico , Mortalidade Hospitalar , Contagem de Plaquetas , Biomarcadores , Curva ROC , Fragmentos de Peptídeos , Receptores de Lipopolissacarídeos
11.
Front Microbiol ; 14: 1135012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970664

RESUMO

The filamentous fungus Aspergillus oryzae, in which sexual reproduction remains to be discovered, proliferates mainly via asexual spores (conidia). Therefore, despite its industrial importance in food fermentation and recombinant protein production, breeding beneficial strains by genetic crosses is difficult. In Aspergillus flavus, which is genetically close to A. oryzae, structures known as sclerotia are formed asexually, but they are also related to sexual development. Sclerotia are observed in some A. oryzae strains, although no sclerotia formation has been reported in most strains. A better understanding of the regulatory mechanisms underlying sclerotia formation in A. oryzae may contribute to discover its sexual development. Some factors involved in sclerotia formation have been previously identified, but their regulatory mechanisms have not been well studied in A. oryzae. In this study, we found that copper strongly inhibited sclerotia formation and induced conidiation. Deletion of AobrlA encoding a core regulator of conidiation and ecdR involved in transcriptional induction of AobrlA suppressed the copper-mediated inhibition of sclerotia formation, suggesting that AobrlA induction in response to copper leads not only to conidiation but also to inhibition of sclerotia formation. In addition, deletion of the copper-dependent superoxide dismutase (SOD) gene and its copper chaperone gene partially suppressed such copper-mediated induction of conidiation and inhibition of sclerotia formation, indicating that copper regulates asexual development via the copper-dependent SOD. Taken together, our results demonstrate that copper regulates asexual development, such as sclerotia formation and conidiation, via the copper-dependent SOD and transcriptional induction of AobrlA in A. oryzae.

12.
Front Microbiol ; 14: 1110996, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814571

RESUMO

Filamentous fungi belonging to the genus Aspergillus are known to possess galactomannan in their cell walls. Galactomannan is highly antigenic to humans and has been reported to be involved in the pathogenicity of pathogenic filamentous fungi, such as A. fumigatus, and in immune responses. In this study, we aimed to confirm the presence of D-galactofuranose-containing glycans and to clarify the biosynthesis of D-galactofuranose-containing glycans in Aspergillus oryzae, a yellow koji fungus. We found that the galactofuranose antigen is also present in A. oryzae. Deletion of ugmA, which encodes UDP-galactopyranose mutase in A. oryzae, suppressed mycelial elongation, suggesting that D-galactofuranose-containing glycans play an important role in cell wall integrity in A. oryzae. Proton nuclear magnetic resonance spectrometry revealed that the galactofuranose-containing sugar chain was deficient and that core mannan backbone structures were present in ΔugmA A. oryzae, indicating the presence of fungal-type galactomannan in the cell wall fraction of A. oryzae. The findings of this study provide new insights into the cell wall structure of A. oryzae, which is essential for the production of fermented foods in Japan.

14.
J Biosci Bioeng ; 133(4): 353-361, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35101371

RESUMO

In industrial applications such as fermentation and heterologous protein production, various Aspergillus oryzae and A. sojae strains are used. Although genetic engineering techniques have been developed for these filamentous fungi, applying such classical techniques to many strains is difficult. Therefore, the establishment of innovative technologies applicable to various industrial strains is required. We previously developed a genome editing technology using the CRISPR/Cas9 system for the efficient genetic engineering of A. oryzae; however, this system is limited by its protospacer adjacent motif sequence. In A. sojae, no genetic engineering using genome editing has been developed. In this study, we aimed to develop a genome editing technology using the Cpf1 nuclease for the genetic engineering of A. oryzae and A. sojae. AMA1-based genome editing vectors bearing codon-optimized cpf1 expression cassettes were constructed, and guide RNA expression cassettes were inserted into the Cpf1 genome editing vectors. Using the resultant plasmids, we performed mutagenesis of the AowA and sC genes in A. oryzae and the AswA gene in A. sojae. We deleted these genes by co-introducing the Cpf1 genome editing plasmid and the donor plasmid. Our study demonstrates that the CRISPR/Cpf1 system can be used as an efficient alternative to the CRISPR/Cas9 system to genetically engineer A. oryzae and as a new approach for efficient genetic engineering of A. sojae.


Assuntos
Aspergillus oryzae , Aspergillus , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Sistemas CRISPR-Cas/genética , Deleção de Genes , Edição de Genes/métodos , Mutagênese
15.
Cancer Sci ; 113(4): 1305-1320, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35102644

RESUMO

Yes-associated protein 1 (YAP1) interacts with TEAD transcription factor in the nucleus and upregulates TEAD-target genes. YAP1 is phosphorylated by large tumor suppressor (LATS) kinases, the core kinases of the Hippo pathway, at 5 serine residues and is sequestered and degraded in the cytoplasm. In human cancers with the dysfunction of the Hippo pathway, YAP1 becomes hyperactive and confers malignant properties to cancer cells. We have observed that cold shock induces protein kinase C (PKC)-mediated phosphorylation of YAP1. PKC phosphorylates YAP1 at 3 serine residues among LATS-mediate phosphorylation sites. Importantly, PKC activation recruits YAP1 to the cytoplasm even in LATS-depleted cancer cells and reduces the cooperation with TEAD. PKC activation induces promyelocytic leukemia protein-mediated SUMOylation of YAP1. SUMOylated YAP1 remains in the nucleus, binds to p73, and promotes p73-target gene transcription. Bryostatin, a natural anti-neoplastic reagent that activates PKC, induces YAP1/p73-mediated apoptosis in cancer cells. Bryostatin reverses malignant transformation caused by the depletion of LATS kinases. Therefore, bryostatin and other reagents that activate PKC are expected to control cancers with the dysfunction of the Hippo pathway.


Assuntos
Transdução de Sinais , Humanos , Briostatinas , Fosfoproteínas/metabolismo , Proteína Quinase C/metabolismo , Serina , Transdução de Sinais/genética , Proteínas de Sinalização YAP
16.
Diagn Microbiol Infect Dis ; 102(4): 115633, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35158291

RESUMO

We observed an emerging resistance to ß-lactams in a P. ananatis bacteremia case. Whole genome sequence analysis detected two ß-lactamase genes as well as related genes that regulate the ß-lactamase genes in the chromosome. The induction experiment resulted in the expression of the class A ß-lactamase gene in the isolate.


Assuntos
Bacteriemia , Pantoea , Bacteriemia/diagnóstico , Bacteriemia/tratamento farmacológico , Humanos , Pantoea/genética , beta-Lactamas/farmacologia
17.
Platelets ; 33(6): 935-944, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35073814

RESUMO

C-type lectin-like receptor 2 (CLEC-2) is a platelet-activated receptor expressed on the surface of platelet membranes. Soluble CLEC-2 (sCLEC-2) has been receiving attention as a predictive marker for thrombotic predisposition. The present study examined the relationship between sCLEC-2 level and degree of coagulation disorder in septic patients. Seventy septic patients were divided into the sepsis-induced disseminated intravascular coagulation (DIC) (SID) group (n = 44) and non-SID group (n = 26). The sCLEC-2 levels were compared between the two groups. Because we suspected that the sCLEC-2 level was affected by the platelet count, we calculated the sCLEC-2/platelet count ratio (C2PAC index). We further divided septic patients into four groups using the Japanese Association for Acute Medicine (JAAM) DIC scoring system (DIC scores: 0-1, 2-3, 4-5, and 6-8). The C2PAC index was significantly higher in the SID group (2.6 ± 1.7) compared with the non-SID group (1.2 ± 0.5) (P < .001). The C2PAC indexes in the four JAAM DIC score groups were 0.9 ± 0.3, 1.1 ± 0.3, 1.7 ± 0.7, and 3.6 ± 1.0, respectively, and this index increased significantly as the DIC score increased (P < .001). According to the receiver-operating curve analysis, the area under the curve (AUC) and optimal cutoff value for the diagnosis of SID were 0.8051 and 1.4 (sensitivity, 75.0%; specificity, 76.9%), respectively. When the C2PAC index and D-dimer level, one of the main fibrinolytic markers, were selected as predictive markers for SID diagnosis in stepwise multiple logistic regression analysis, it was possible to diagnose SID with a high probability (AUC, 0.9528; sensitivity, 0.9545; specificity, 0.8846). The C2PAC index is a useful predictor of SID progression and diagnosis in septic patients.


Assuntos
Transtornos da Coagulação Sanguínea , Coagulação Intravascular Disseminada , Lectinas Tipo C , Glicoproteínas de Membrana , Sepse , Biomarcadores/sangue , Transtornos da Coagulação Sanguínea/complicações , Coagulação Intravascular Disseminada/diagnóstico , Coagulação Intravascular Disseminada/etiologia , Humanos , Lectinas Tipo C/sangue , Glicoproteínas de Membrana/sangue , Contagem de Plaquetas , Sepse/complicações , Sepse/diagnóstico
18.
Neurosci Res ; 175: 82-97, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34979163

RESUMO

There have been a number of reports about the transcriptional regulatory networks in schizophrenia. However, most of these studies were based on a specific transcription factor or a single dataset, an approach that is inadequate to understand the diverse etiology and underlying common characteristics of schizophrenia. Here we reconstructed and compared the transcriptional regulatory network for lipid metabolism enzymes using 15 public transcriptome datasets of neural cells from schizophrenia patients. Since many of the well-known schizophrenia-related SNPs are in enhancers, we reconstructed a network including enhancer-dependent regulation and found that 53.3 % of the total number of edges (7,577 pairs) involved regulation via enhancers. By examining multiple datasets, we found common and unique transcriptional modes of regulation. Furthermore, enrichment analysis of SNPs that were connected with genes in the transcriptional regulatory networks by eQTL suggested an association with hematological cell counts and some other traits/diseases, whose relationship to schizophrenia was either not or insufficiently reported in previous studies. Based on these results, we suggest that in future studies on schizophrenia, information on genotype, comorbidities and hematological cell counts should be included, along with the transcriptome, for a more detailed genetic stratification and mechanistic exploration of schizophrenia.


Assuntos
Esquizofrenia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Metabolismo dos Lipídeos/genética , Esquizofrenia/genética
19.
Mol Cell Biol ; 42(2): e0031021, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34898277

RESUMO

RASSF6, a member of the tumor suppressor Ras-association domain family (RASSF) proteins, regulates cell cycle arrest and apoptosis via p53 and plays a tumor suppressor role. We previously reported that RASSF6 blocks MDM2-mediated p53 degradation and enhances p53 expression. In this study, we demonstrated that RASSF6 has nuclear localization and nuclear export signals and that DNA damage triggers the nuclear accumulation of RASSF6. We found that RASSF6 directly binds to BAF53, the component of SWI/SNF complex. DNA damage induces CDK9-mediated phosphorylation of BAF53, which enhances the interaction with RASSF6 and increases the amount of RASSF6 in the nucleus. Subsequently, RASSF6 augments the interaction between BAF53 and BAF60a, another component of the SWI/SNF complex, and further promotes the interaction of BAF53 and BAF60a with p53. BAF53 silencing or BAF60a silencing attenuates RASSF6-mediated p53 target gene transcription and apoptosis. Thus, RASSF6 is involved in the regulation of DNA damage-induced complex formation, including BAF53, BAF60a, and p53.


Assuntos
Actinas/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Dano ao DNA/genética , Proteínas de Ligação a DNA/metabolismo , Transcrição Gênica/genética , Proteína Supressora de Tumor p53/metabolismo , Actinas/genética , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/genética , Quinase 9 Dependente de Ciclina/genética , Dano ao DNA/fisiologia , Proteínas de Ligação a DNA/genética , Humanos , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Supressoras de Tumor/metabolismo
20.
Genes Cells ; 26(12): 999-1013, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34652874

RESUMO

RASSF6 is a member of the tumor suppressor Ras association domain family (RASSF) proteins. We have reported using human cancer cell lines that RASSF6 induces apoptosis and cell cycle arrest via p53 and plays tumor suppressive roles. In this study, we generated Rassf6 knockout mice by CRISPR/Cas technology. Contrary to our expectation, Rassf6 knockout mice were apparently healthy. However, Rassf6-null mouse embryonic fibroblasts (MEF) were resistant against ultraviolet (UV)-induced apoptosis/cell cycle arrest and senescence. UV-induced p53-target gene expression was compromised, and DNA repair was delayed in Rassf6-null MEF. More importantly, KRAS active mutant promoted the colony formation of Rassf6-null MEF but not the wild-type MEF. RNA sequencing analysis showed that NF-κB signaling was enhanced in Rassf6-null MEF. Consistently, 7,12-dimethylbenz(a)anthracene (DMBA) induced skin inflammation in Rassf6 knockout mice more remarkably than in the wild-type mice. Hence, Rassf6 deficiency not only compromises p53 function but also enhances NF-κB signaling to lead to oncogenesis.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , NF-kappa B , Animais , Apoptose , Proteínas Reguladoras de Apoptose , Fibroblastos/metabolismo , Camundongos , Camundongos Knockout , Proteínas Monoméricas de Ligação ao GTP/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...