RESUMO
Several highly pathogenic mammarenaviruses cause severe hemorrhagic and neurologic disease in humans for which vaccines and antivirals are limited or unavailable. New World (NW) mammarenavirus Machupo virus (MACV) infection causes Bolivian hemorrhagic fever in humans. We previously reported that the disruption of specific N-linked glycan sites on the glycoprotein (GPC) partially attenuates MACV in an interferon alpha/beta and gamma (IFN-α/ß and -γ) receptor knockout (R-/-) mouse model. However, some capability to induce neurological pathology still remained. The highly pathogenic Junin virus (JUNV) is another NW arenavirus closely related to MACV. An F427I substitution in the GPC transmembrane domain (TMD) rendered JUNV attenuated in a lethal mouse model after intracranial inoculation. In this study, we rationally designed and rescued a MACV containing mutations at two glycosylation sites and the corresponding F438I substitution in the GPC TMD. The MACV mutant is fully attenuated in IFN-α/ß and -γ R-/- mice and outbred guinea pigs. Furthermore, inoculation with this mutant MACV completely protected guinea pigs from wild-type MACV lethal challenge. Last, we found the GPC TMD F438I substitution greatly impaired MACV growth in neuronal cell lines of mouse and human origins. Our results highlight the critical roles of the glycans and the TMD on the GPC in arenavirus virulence, which provide insight into the rational design of potential vaccine candidates for highly pathogenic arenaviruses. IMPORTANCE For arenaviruses, the only vaccine available is the live attenuated Candid#1 vaccine, a JUNV vaccine approved in Argentina. We and others have found that the glycans on GPC and the F427 residue in the GPC TMD are important for virulence of JUNV. Nevertheless, mutating either of them is not sufficient for full and stable attenuation of JUNV. Using reverse genetics, we disrupted specific glycosylation sites on MACV GPC and also introduced the corresponding F438I substitution in the GPC TMD. This MACV mutant is fully attenuated in two animal models and protects animals from lethal infection. Thus, our studies highlight the feasibility of rational attenuation of highly pathogenic arenaviruses for vaccine development. Another important finding from this study is that the F438I substitution in GPC TMD could substantially affect MACV replication in neurons. Future studies are warranted to elucidate the underlying mechanism and the implication of this mutation in arenavirus neural tropism.
Assuntos
Arenavirus do Novo Mundo , Febre Hemorrágica Americana , Vacinas Virais , Animais , Arenavirus do Novo Mundo/genética , Arenavirus do Novo Mundo/imunologia , Modelos Animais de Doenças , Glicoproteínas/metabolismo , Glicosilação , Cobaias , Febre Hemorrágica Americana/imunologia , Febre Hemorrágica Americana/virologia , Vírus Junin/genética , Vírus Junin/imunologia , Mutação , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologiaRESUMO
Two novel influenza A virus-like genomes were detected in fruit bats in Central and South America. However, the biological properties of these bat-derived influenza viruses (BatIVs) are still largely unknown since infectious viral particles have never been isolated from the infected host species. In this study, a reverse genetics approach was used to generate infectious BatIV particles entirely from plasmids encoding full-length sequences in eight gene segments. We inoculated BatIV particles into various cell cultures including bat-derived cell lines and found that BatIVs infected particular bat-derived cells efficiently but not the other cell lines tested. Reassortant viruses between the two BatIVs were also successfully generated and their replication in the susceptible bat cell lines was confirmed. These findings suggest a limited host range and reassortment potential of BatIVs in nature, providing fundamental information for understanding of the ecology of BatIVs.