Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(11): 17069-17076, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34154257

RESUMO

An intense white light (WL) continuum from 1600 to 2400 nm is generated in a 20-mm-long YAG irradiated by 1-ps, 1030-nm pulses. Long filamentation formed in the YAG is proven to be responsible for the enhancement of the longer-wavelength spectral part of the WL. The WL is compressed down to 24.6 fs ( 3.9 cycles at 1900 nm) after optical parametric chirped-pulse amplification in a lithium niobate crystal near degeneracy, confirming that its spectral phase is well behaved. The pulse compression experiment reveals that the group delay introduced in the WL generation process is dominated by the dispersion of YAG.

2.
Opt Express ; 24(2): 1685-92, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26832547

RESUMO

We have developed a 1 kHz regenerative amplifier using an Yb:Y(2)O(3) ceramic thin disk as the gain medium. Furthermore, the thermal conductivity and heat generation property of Yb:Y(2)O(3) ceramic were investigated. In the developed regenerative amplifier, a laser beam is bounced off the thin disk six times in each round trip. The output energy is over 2 mJ, spectral bandwidth is 1.8 nm at FWHM, and pulse duration after pulse compression is 0.9 ps.

3.
Opt Express ; 23(11): 15057-64, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26072862

RESUMO

We have developed a 1 kHz repetition picosecond laser system dedicated for intense terahertz (THz) pulse generation. The system comprises a chirped pulse amplification laser equipped with a Yb:YAG thin-disk amplifier. At room temperature, the Yb:YAG thin-disk regenerative amplifier provides pulses having energy of over 10 mJ and spectral bandwidth of 1.2 nm. The pulse duration achieved after passage through a diffraction grating pair compressor was 1.3 ps. By employing this picosecond laser as a pump source, THz pulses having a peak frequency of 0.3 THz and 4 µJ of energy were generated by means of optical rectification in an Mg-doped LiNbO3 crystal.

4.
Opt Lett ; 39(18): 5439-42, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26466292

RESUMO

A novel design for a contact grating device with an incorporated Fabry-Perot resonator is proposed for high-power terahertz (THz) light generation. We deposited a multilayer consisting of Ta(2)O(5) and Al(2)O(3) on a magnesium-doped stoichiometric LiNbO(3) substrate and fabricated grating grooves on the outermost layer. The multilayer was designed such that conditions for a Fabry-Perot resonator were satisfied for light diffracted by the grating. Consequently, the fraction of light transmitted into the LiNbO(3) substrate, i.e., the diffraction efficiency, was enhanced by the resonator. The diffraction efficiency of the fabricated device was 71%, which is close to the calculated value of 78% from the optimized design. THz light generation was also demonstrated with the contact grating device. The THz output of 0.41 µJ was obtained using near-infrared pump light of 2.7 mJ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...