Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(3): e0122263, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25811836

RESUMO

Neurons might interact via electric fields and this notion has been referred to as ephaptic interaction. It has been shown that various types of ion channels are distributed along the dendrites and are capable of supporting generation of dendritic spikes. We hypothesized that generation of dendritic spikes play important roles in the ephaptic interactions either by amplifying the impact of electric fields or by providing current source to generate electric fields. To test if dendritic activities can be modulated by electric fields, we developed a method to monitor local Ca-transients in the dendrites of a neuronal population in acute rat hippocampal slices by applying spinning-disk confocal microscopy and multi-cell dye loading technique. In a condition in which the dendrites of CA1 pyramidal neurons show spontaneous Ca-transients due to added 50 µM 4-aminopyridine to the bathing medium and adjusted extracellular potassium concentration, we examined the impact of sinusoidal electric fields on the Ca-transients. We have found that spontaneously occurring fast-Ca-transients in the tufts of the apical dendrites of CA1 pyramidal neurons can be blocked by applying 1 µM tetrodotoxin, and that the timing of the transients become entrained to sub-threshold 1-4 Hz electric fields with an intensity as weak as 0.84 mV/mm applied parallel to the somato-dendritic axis of the neurons. The extent of entrainment increases with intensity below 5 mV/mm, but does not increase further over the range of 5-20 mV/mm. These results suggest that population of pyramidal cells might be able to detect electric fields with biologically relevant intensity by modulating the timing of dendritic spikes.


Assuntos
Dendritos/metabolismo , Dendritos/fisiologia , Células Piramidais/fisiologia , Animais , Cálcio , Estimulação Elétrica , Hipocampo , Masculino , Potenciais da Membrana , Ratos
2.
Neural Netw ; 55: 11-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24705544

RESUMO

We propose a cell detection algorithm using non-negative matrix factorization (NMF) on Ca2+ imaging data. To apply NMF to Ca2+ imaging data, we use the bleaching line of the background fluorescence intensity as an a priori background constraint to make the NMF uniquely dissociate the background component from the image data. This constraint helps us to incorporate the effect of dye-bleaching and reduce the non-uniqueness of the solution. We demonstrate that in the case of noisy data, the NMF algorithm can detect cells more accurately than Mukamel's independent component analysis algorithm, a state-of-art method. We then apply the NMF algorithm to Ca2+ imaging data recorded on the local activities of subcellular structures of multiple cells in a wide area. We show that our method can decompose rapid transient components corresponding to somas and dendrites of many neurons, and furthermore, that it can decompose slow transient components probably corresponding to glial cells.


Assuntos
Algoritmos , Região CA1 Hipocampal/citologia , Cálcio/análise , Modelos Neurológicos , Neurônios/química , Animais , Simulação por Computador , Dendritos/química , Masculino , Neurônios/citologia , Ratos , Ratos Wistar , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...