Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 533(4): 1413-1418, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33097182

RESUMO

V-ATPases are ubiquitous proton-transporting ATPases of eukaryotic and prokaryotic membranes that utilize energy from ATP hydrolysis. The hydrophilic catalytic part called V1-ATPase is composed of a ring-shaped hexametric A3B3 complex and a central DF shaft. We previously proposed a rotation mechanism of the Enterococcus hirae V1-ATPase based on the crystal structures of the V1 and A3B3 complexes. However, the driving force that induces the conformational changes of A3B3 and rotation of the DF shaft remains unclear. In this study, we investigated the binding affinity changes between subunits of V1-ATPase by surface plasmon resonance analysis. The binding of ATP to subunit A was found to considerably increase the affinity between the A and B subunits, and thereby ATP binding contributes to forming the A1B1 tight conformation. Furthermore, the DF shaft bound to the reconstituted A1B1 complex with high affinity, suggesting that the tight A1B1 complex is a major binding unit of the shaft in the A3B3 ring complex. Based on these results, we propose that rotation of the V1-ATPase is driven by affinity changes between each subunit via thermal fluctuations.


Assuntos
ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Rotação , Ressonância de Plasmônio de Superfície , ATPases Vacuolares Próton-Translocadoras/genética
2.
Sci Adv ; 5(1): eaau8149, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30729160

RESUMO

V1-ATPase is an ATP-driven rotary motor that is composed of a ring-shaped A3B3 complex and a central DF shaft. The nucleotide-free A3B3 complex of Enterococcus hirae, composed of three identical A1B1 heterodimers, showed a unique asymmetrical structure, probably due to the strong binding of the N-terminal barrel domain, which forms a crown structure. Here, we mutated the barrel region to weaken the crown, and performed structural analyses using high-speed atomic force microscopy and x-ray crystallography of the mutant A3B3. The nucleotide-free mutant A3B3 complex had a more symmetrical open structure than the wild type. Binding of nucleotides produced a closely packed spiral-like structure with a disrupted crown. These findings suggest that wild-type A3B3 forms a metastable (stressed) asymmetric structure composed of unstable A1B1 conformers due to the strong constraint of the crown. The results further the understanding of the principle of the cooperative transition mechanism of rotary motors.


Assuntos
Streptococcus faecium ATCC 9790/enzimologia , Estrutura Quaternária de Proteína , ATPases Vacuolares Próton-Translocadoras/química , Sítios de Ligação , Biocatálise , Sistema Livre de Células/metabolismo , Cristalografia por Raios X , Escherichia coli/citologia , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Proteínas Mutantes/química , Mutação , Nucleotídeos/química , Domínios Proteicos/genética , Multimerização Proteica , Subunidades Proteicas/química , Rotação
3.
Nat Commun ; 7: 13235, 2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27807367

RESUMO

V1-ATPases are highly conserved ATP-driven rotary molecular motors found in various membrane systems. We recently reported the crystal structures for the Enterococcus hirae A3B3DF (V1) complex, corresponding to the catalytic dwell state waiting for ATP hydrolysis. Here we present the crystal structures for two other dwell states obtained by soaking nucleotide-free V1 crystals in ADP. In the presence of 20 µM ADP, two ADP molecules bind to two of three binding sites and cooperatively induce conformational changes of the third site to an ATP-binding mode, corresponding to the ATP-binding dwell. In the presence of 2 mM ADP, all nucleotide-binding sites are occupied by ADP to induce conformational changes corresponding to the ADP-release dwell. Based on these and previous findings, we propose a V1-ATPase rotational mechanism model.


Assuntos
ATPases Vacuolares Próton-Translocadoras/metabolismo , Difosfato de Adenosina , Adenilil Imidodifosfato , Cristalografia por Raios X , Escherichia coli , Conformação Proteica , ATPases Vacuolares Próton-Translocadoras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...