Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 10: e12913, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186491

RESUMO

The weevil genus Leschenius del Río (Curculionidae: Entiminae: Naupactini) is distributed in the northern Andes, in Colombia and Ecuador. Among its species, L. vulcanorum stands out as an important pest of potatoes in its parthenogenetic form, which is known as "tiroteador de la papa". In this study, the adult male and the larval stage (first and mature larvae) of L. vulcanorun are described and illustrated for the first time. A description of the male of Leschenius bifurcatus is also provided. A new bisexual species was discovered, Leschenius ventrilingulatus sp. nov., and is described from Ecuador. An updated phylogenetic analysis was performed, including the new species, with results indicating a sister group relationship between L. ventrilingulatus and L. vulcanorum. They can be distinguished because the former is usually of smaller size and is covered by denser and thicker setae, has shorter antennae, a subcylindrical shape of the pronotum, shorter elytra (about 1.5×longer than wide at base), the female has ventrite 4 with a posterior rounded projection, and posterior margin of ventrite 5 subacute, not excavated. This paper also includes lectotype designations, a revised key to all known species of Leschenius, habitus photos of males and females, illustrations of genitalia, and a distribution map.


Assuntos
Besouros , Solanum tuberosum , Gorgulhos , Feminino , Masculino , Animais , Gorgulhos/genética , Filogenia , Larva/genética , Equador
2.
J Evol Biol ; 33(7): 957-965, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32277841

RESUMO

Genital coevolution is a pervasive phenomenon as changes in one sex tend to impose fitness consequences on the other, generating sexual conflict. Sexual conflict is often thought to cause stronger selection on males due to the Darwin-Bateman's anisogamy paradigm. However, recent studies have demonstrated that female genitalia may be equally elaborated and perform diverse extra-copulatory functions. These characteristics suggest that female genitals can also be primary targets of selection, especially where natural selection acts on female-exclusive functions such as oviposition. Here, we test this hypothesis in a statistical phylogenetic framework across the whole beetle (Coleoptera) phylogeny, investigating whether coevolution of specific genital traits may be triggered by changes in females. We focus on traits of the proctiger, which composes part of the male terminalia and the female ovipositor. Our results present a comprehensive case of male-female genital coevolution and provide solid statistical evidence for a female-initiated coevolutionary process where the vast majority of evolutionary transitions in males have occurred only after changes in females. We corroborate the hypothesis that female traits may change independently and elicit counter-adaptations in males. Furthermore, by showing a consistent pattern across the phylogeny of the most diverse group of animals, our results suggest that this female-driven dynamics may persist through long time scales.


Assuntos
Coevolução Biológica , Besouros/genética , Filogenia , Seleção Genética , Animais , Besouros/anatomia & histologia , Feminino , Genitália/anatomia & histologia , Masculino
3.
Mol Biol Evol ; 35(4): 823-836, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29294021

RESUMO

The phylogeny and evolution of weevils (the beetle superfamily Curculionoidea) has been extensively studied, but many relationships, especially in the large family Curculionidae (true weevils; > 50,000 species), remain uncertain. We used phylogenomic methods to obtain DNA sequences from 522 protein-coding genes for representatives of all families of weevils and all subfamilies of Curculionidae. Most of our phylogenomic results had strong statistical support, and the inferred relationships were generally congruent with those reported in previous studies, but with some interesting exceptions. Notably, the backbone relationships of the weevil phylogeny were consistently strongly supported, and the former Nemonychidae (pine flower snout beetles) were polyphyletic, with the subfamily Cimberidinae (here elevated to Cimberididae) placed as sister group of all other weevils. The clade comprising the sister families Brentidae (straight-snouted weevils) and Curculionidae was maximally supported and the composition of both families was firmly established. The contributions of substitution modeling, codon usage and/or mutational bias to differences between trees reconstructed from amino acid and nucleotide sequences were explored. A reconstructed timetree for weevils is consistent with a Mesozoic radiation of gymnosperm-associated taxa to form most extant families and diversification of Curculionidae alongside flowering plants-first monocots, then other groups-beginning in the Cretaceous.


Assuntos
Filogenia , Gorgulhos/genética , Animais , Análise de Sequência de DNA
4.
Folia Parasitol (Praha) ; 61(4): 377-84, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25185409

RESUMO

Gymnorhadinorhynchus gen. n. is proposed to accommodate its type species, G. decapteri sp. n., a parasite of the marine fish Decapterus punctatus (Cuvier), caught from the coastal waters of Brazil. Gymnorhadinorhynchus decapteri sp. n. was morphologically most similar to species of two echinorhynchid families, the Rhadinorhynchidae and the Cavisomidae, particularly in the structure of the proboscis and the absence of somatic spines, respectively. This combination of morphological features made it difficult to assign our specimen to an extant family of the Acanthocephala. Therefore, in order to clarify the systematic placement of G. decapteri, a molecular phylogenetic analysis was performed based on the SSU and LSU rDNA and the mitochondrial cox1 gene sequences obtained for the new taxon and other 26 acanthocephalan species. The results of parsimony and maximum likelihood analyses, using individual, combined and concatenated sequence data, consistently indicate that the specimens do not belong to any known family of the Echinorhynchida. Rather, G. decapteri represents a distinct lineage that is closely related to the Transvenidae, but distantly related to both the Rhadinorhynchidae and the Cavisomidae. Gymnorhadinorhynchidae fam. n. is therefore erected. This newly described family can be distinguished from other families of Echinorhynchida by the combination of the following morphological characters: a proboscis cylindrical with 10 rows of 22-26 hooks, dorsoventral differences in proboscis hooks, basal hooks forming a ring and being abruptly larger than anterior hooks, absence of trunk spines and presence of four tubular cement glands. This combination, in addition to several molecular autapomorphies, justifies the erection of a new genus, Gymnorhadinorhynchus gen. n., in order to accommodate this new species.


Assuntos
Acantocéfalos/classificação , Acantocéfalos/genética , Helmintíase Animal/parasitologia , Animais , Oceano Atlântico/epidemiologia , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , Peixes , Helmintíase Animal/epidemiologia , Especificidade da Espécie
5.
Arthropod Struct Dev ; 40(2): 146-58, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21185393

RESUMO

External and internal features of the male postabdomen of Tetraphalerus bruchi were examined with a broad spectrum of morphological techniques and are described in detail. The conditions found in males of Tetraphalerus are compared to those in other archostematan beetles and members of other coleopteran suborders. The far-reaching reduction of the sternite I, structural modifications of sternite II, the retracted condition of the terminal segments, and ventromedially fused apodemes arising from the anterior margin of tergite IX are likely autapomorphies of Coleoptera. The male postabdomen of Tetraphalerus is less derived than in most other groups of Coleoptera. The sclerotized elements are symmetrical. In contrast to earlier statements on the archostematan male genital apparatus a distinctly developed, sclerotized basal piece is present. The aedeagus is trilobed and all elements of the copulatory apparatus are distinct. The muscular equipment is simple and moderately developed. All muscles (except the transverse muscles 61 and 62) occur pairwise and symmetrically. The distinct increase of the number of postabdominal muscles in representatives of the higher lineages of Coleoptera is likely linked with a torsion of the copulatory apparatus, which also results in asymmetries of the sclerotised parts. The testes of Tetraphalerus are long, multi-coiled tubes like in other archostematans, Myxophaga (Torridincola) and Adephaga. The presence of a deep notch on the parameres is a synapomorphy of Tetraphalerus and Omma. Curved parameres, a shortened distal portion, and a distinctly shortened penis are potential synapomorphies of Omma rutherfordi and Omma mastersi. The large size of the sclerotized part of the phallobase ('basal piece') and the division of the sclerotization of sternum IX are potential ground-plan autapomorphies of Archostemata, with secondary modification of the latter feature in Cupedidae. The reduced condition of the sclerotization of sternum VIII is an apomorphic condition which has likely evolved independently in Tetraphalerus and Paracupes. Further anatomical investigation of the male genital apparatus of Coleoptera and holometabolous insects in general is required for a reliable morphological and phylogenetic interpretation. Concerning the presence or absence of particular sclerotizations (e.g., 'basal piece' of phallobase) histological section series and Confocal Laser Scanning Microscopy can add more precise information to what can be observed using permanent preparations of macerated specimens.


Assuntos
Besouros/ultraestrutura , Abdome/anatomia & histologia , Animais , Besouros/anatomia & histologia , Besouros/classificação , Genitália Masculina/anatomia & histologia , Genitália Masculina/ultraestrutura , Masculino , Filogenia
6.
Proc Natl Acad Sci U S A ; 106(17): 7083-8, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19365072

RESUMO

The extraordinary diversity of herbivorous beetles is usually attributed to coevolution with angiosperms. However, the degree and nature of contemporaneity in beetle and angiosperm diversification remain unclear. Here we present a large-scale molecular phylogeny for weevils (herbivorous beetles in the superfamily Curculionoidea), one of the most diverse lineages of insects, based on approximately 8 kilobases of DNA sequence data from a worldwide sample including all families and subfamilies. Estimated divergence times derived from the combined molecular and fossil data indicate diversification into most families occurred on gymnosperms in the Jurassic, beginning approximately 166 Ma. Subsequent colonization of early crown-group angiosperms occurred during the Early Cretaceous, but this alone evidently did not lead to an immediate and major diversification event in weevils. Comparative trends in weevil diversification and angiosperm dominance reveal that massive diversification began in the mid-Cretaceous (ca. 112.0 to 93.5 Ma), when angiosperms first rose to widespread floristic dominance. These and other evidence suggest a deep and complex history of coevolution between weevils and angiosperms, including codiversification, resource tracking, and sequential evolution.


Assuntos
Asteraceae/fisiologia , Flores/fisiologia , Gorgulhos/fisiologia , Animais , Dados de Sequência Molecular , Filogenia , Dinâmica Populacional , Fatores de Tempo
7.
Syst Biol ; 51(5): 761-85, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12396590

RESUMO

The main goals of this study were to provide a robust phylogeny for the families of the superfamily Curculionoidea, to discover relationships and major natural groups within the family Curculionidae, and to clarify the evolution of larval habits and host-plant associations in weevils to analyze their role in weevil diversification. Phylogenetic relationships among the weevils (Curculionoidea) were inferred from analysis of nucleotide sequences of 18S ribosomal DNA (rDNA; approximately 2,000 bases) and 115 morphological characters of larval and adult stages. A worldwide sample of 100 species was compiled to maximize representation of weevil morphological and ecological diversity. All families and the main subfamilies of Curculionoidea were represented. The family Curculionidae sensu lato was represented by about 80 species in 30 "subfamilies" of traditional classifications. Phylogenetic reconstruction was accomplished by parsimony analysis of separate and combined molecular and morphological data matrices and Bayesian analysis of the molecular data; tree topology support was evaluated. Results of the combined analysis of 18S rDNA and morphological data indicate that monophyly of and relationships among each of the weevil families are well supported with the topology ((Nemonychidae, Anthribidae) (Belidae (Attelabidae (Caridae (Brentidae, Curculionidae))))). Within the clade Curculionidae sensu lato, the basal positions are occupied by mostly monocot-associated taxa with the primitive type of male genitalia followed by the Curculionidae sensu stricto, which is made up of groups with the derived type of male genitalia. High support values were found for the monophyly of some distinct curculionid groups such as Dryophthorinae (several tribes represented) and Platypodinae (Tesserocerini plus Platypodini), among others. However, the subfamilial relationships in Curculionidae are unresolved or weakly supported. The phylogeny estimate based on combined 18S rDNA and morphological data suggests that diversification in weevils was accompanied by niche shifts in host-plant associations and larval habits. Pronounced conservatism is evident in larval feeding habits, particularly in the host tissue consumed. Multiple shifts to use of angiosperms in Curculionoidea were identified, each time associated with increases in weevil diversity and subsequent shifts back to gymnosperms, particularly in the Curculionidae.


Assuntos
DNA Ribossômico/genética , Modelos Genéticos , Filogenia , Animais , Besouros , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
8.
Cladistics ; 13(4): 285-312, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34911227

RESUMO

A cladistic analysis of Curculionidae was performed using 49 characters (41 from larvae, three from pupae, and five from adults). Illustrations of characters of immatures are provided. The analysis involved 19 terminal units and a hypothetical ancestor determined by the outgroup comparison method used to root the tree. One most parsimonious cladogram was obtained based on the complete data set and the following phylogenetic hypothesis is proposed: Ithycerinae, Microcerinae, and Brachycrinae sensu stricto are broad-nosed weevils placed sequentially at the base of the cladogram. The remaining weevil subfamilies form two major natural groups: one constituted by the sister taxa Rhynchophorinae-Platypodinae; the other with Erirhininae at the base, as sister taxon of the "Curculionidae sensu stricto" which show an unresolved trichotomy involving Curculioninae, Cossoninae-Scolytinae, and the clade including the Entiminae and allied subfamilies. This latter clade of broad-nosed weevils has Thecesterninae at the base; the next branch is Amycterinae, the sister taxon of the clade comprising two groups: one constituted by Aterpinae, Rhytirrhininae, and Gonipterinae; the other is Entiminae whose units form two main clades: one constituted by the sister tribes Pachyrhynchini-Ectemnorhinini, and the other by Alophini, Sitonini, and Entimini. When the analysis was done using only immature characters, results congruent with those based on the complete data set were obtained, except for the placement of Erirhininae. According to the results the hypothesis of monophyly of broad-nosed weevils is not accepted; the Entiminae are justified as monophyletic and their natural classification into tribes is proposed and the phylogenetic position and relationships of higher taxa of Curculionidae are discussed. This paper shows the importance of immature characters in recognition of natural groups and relationships in Curculionidae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...