Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Qual User Exp ; 8(1): 4, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304060

RESUMO

Efficient objective and perceptual metrics are valuable tools to evaluate the visual impact of compression artifacts on the visual quality of volumetric videos (VVs). In this paper, we present some of the MPEG group efforts to create, benchmark and calibrate objective quality assessment metrics for volumetric videos represented as textured meshes. We created a challenging dataset of 176 volumetric videos impaired with various distortions and conducted a subjective experiment to gather human opinions (more than 5896 subjective scores were collected). We adapted two state-of-the-art model-based metrics for point cloud evaluation to our context of textured mesh evaluation by selecting efficient sampling methods. We also present a new image-based metric for the evaluation of such VVs whose purpose is to reduce the cumbersome computation times inherent to the point-based metrics due to their use of multiple kd-tree searches. Each metric presented above is calibrated (i.e., selection of best values for parameters such as the number of views or grid sampling density) and evaluated on our new ground-truth subjective dataset. For each metric, the optimal selection and combination of features is determined by logistic regression through cross-validation. This performance analysis, combined with MPEG experts' requirements, lead to the validation of two selected metrics and recommendations on the features of most importance through learned feature weights.

2.
IEEE Trans Vis Comput Graph ; 23(5): 1428-1441, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28129161

RESUMO

We introduce analytic approximations for accurate real-time rendering of surfaces lit by non-occluded area light sources. Our solution leverages the Irradiance Tensors developed by Arvo for the shading of Phong surfaces lit by a polygonal light source. Using a reformulation of the 1D boundary edge integral, we develop a general framework for approximating and evaluating the integral in constant time using simple peak shape functions. To overcome the Phong restriction, we propose a low cost edge splitting strategy that accounts for the spherical warp introduced by the half vector parametrization. Thanks to this novel extension, we accurately approximate common microfacet BRDFs, providing a practical method producing specular stretches that closely match the ground truth in real-time. Finally, using the same approximation framework, we introduce support for spherical and disc area light sources, based on an original polygon spinning method supporting non-uniform scaling operations and horizon clipping. Implemented on a GPU, our method achieves real-time performances without any assumption on area light shape nor surface roughness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA