Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37960587

RESUMO

In this article, a compact 4-port UWB (Ultra-Wide Band) MIMO (Multiple Input Multiple Output) antenna is proposed. A low profile FR-4 substrate is used as a dielectric material with the dimensions of 58 × 58 mm2 (0.52λ × 0.52λ) at 2.8 GHz and a standard thickness of 1.6 mm. The proposed design characterizes an impedance bandwidth starting from 2.8 to 12.1 GHz (124.1%). Each of the four elements of the proposed MIMO antenna configuration consists of a monopole antenna with PG (partial ground) that has a slot at its center. The corner of each patch (radiator) and ground slot are rounded for impedance matching. Each unit cell is in an orthogonal orientation, forming a quad-port MIMO antenna system. For reference, the partial ground of each unit cell is connected meticulously with the others. The simulated results of the proposed quad-port MIMO antenna design were configured and validated by fabrication and testing. The proposed Quad-port MIMO design has a 6.57 dBi peak gain and 97% radiation efficiency. The proposed design has good isolation below 15 dB in the lower frequency range and below 20 dB in the higher frequency range. The design has a measured ECC (Envelop Correlation Co-efficient) of 0.03 and DG (Diversity Gain) of 10 dB. The value of TARC (Total Active Reflection Coefficient) over the entire operating band is less than 10 dB. Moreover, the design maintained CCL (Channel Capacity Loss) < 0.4 bits/sec/Hz and MEG (Mean Effective Gain) < 3 dB. Based on the obtained results, the proposed design is suitable for the intended high data rate UWB wireless communication portable devices.

2.
Sensors (Basel) ; 23(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36679452

RESUMO

A self-decoupled technique is described that enables the radiating elements in the antenna array to be densely packed for multiple-input multiple-output (MIMO) wireless communications systems. High isolation between the adjacent antenna elements is obtained by fixing the radiating elements in an orthogonal configuration with respects to each other. Current from the adjacent ports cancels their impact which results in low mutual coupling. The additional benefit of this configuration is realizing a densely packed array. The ground plane of each radiating element on the array board itself are isolated to mitigate surface wave propagations to suppress mutual coupling between the antenna elements. The radiating elements are based on a modified edge-fed circular patch antenna that includes a curved slot line and open-circuited stub to widen the array's impedance bandwidth with no impact on the antenna's footprint size. The proposed technique was verified with the design of an antenna array of matrix size 4 × 4 centered at 3.5 GHz. The array had a measured impedance bandwidth of 4 GHz from 1.5 GHz to 5.5 GHz, which corresponds to a fractional bandwidth of 114%, peak gain of 3 dBi and radiation efficiency of 84%. Its average diversity gain and envelope correlation coefficient (ECC) over its operating band are 9.6 dB and <0.016, respectively. The minimum isolation achieved between the radiating elements is better than 15 dB. The dimensions of the array are 0.4 × 0.4 × 0.039λ_g^3. The proposed array has characteristics suitable for sub-6 GHz wireless communication systems


Assuntos
Bandagens , Reprodução , Impedância Elétrica , Comunicação
3.
Sensors (Basel) ; 22(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35808425

RESUMO

The Internet of Things (IoT) supports human endeavors by creating smart environments. Although the IoT has enabled many human comforts and enhanced business opportunities, it has also opened the door to intruders or attackers who can exploit the technology, either through attacks or by eluding it. Hence, security and privacy are the key concerns for IoT networks. To date, numerous intrusion detection systems (IDS) have been designed for IoT networks, using various optimization techniques. However, with the increase in data dimensionality, the search space has expanded dramatically, thereby posing significant challenges to optimization methods, including particle swarm optimization (PSO). In light of these challenges, this paper proposes a method called improved dynamic sticky binary particle swarm optimization (IDSBPSO) for feature selection, introducing a dynamic search space reduction strategy and a number of dynamic parameters to enhance the searchability of sticky binary particle swarm optimization (SBPSO). Through this approach, an IDS was designed to detect malicious data traffic in IoT networks. The proposed model was evaluated using two IoT network datasets: IoTID20 and UNSW-NB15. It was observed that in most cases, IDSBPSO obtained either higher or similar accuracy even with less number of features. Moreover, IDSBPSO substantially reduced computational cost and prediction time, compared with conventional PSO-based feature selection methods.


Assuntos
Internet das Coisas , Algoritmos , Humanos
4.
Sensors (Basel) ; 18(11)2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445755

RESUMO

The ever-growing Internet of Things (IoT) data traffic is one of the primary research focuses of future mobile networks. 3rd Generation Partnership Project (3GPP) standards like Long Term Evolution-Advanced (LTE-A) have been designed for broadband services. However, IoT devices are mainly based on narrowband applications. Standards like LTE-A might not provide efficient spectrum utilization when serving IoT applications. The aggregation of IoT data at an intermediate node before transmission can answer the issues of spectral efficiency. The objective of this work is to utilize the low cost 3GPP fixed, inband, layer-3 Relay Node (RN) for integrating IoT traffic into 5G network by multiplexing data packets at the RN before transmission to the Base Station (BS) in the form of large multiplexed packets. Frequency resource blocks can be shared among several devices with this method. An analytical model for this scheme, developed as an r-stage Coxian process, determines the radio resource utilization and system gain achieved. The model is validated by comparing the obtained results with simulation results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...