Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(5): 106651, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37168549

RESUMO

Culturing and screening cells in microfluidics, particularly in three-dimensional formats, has the potential to impact diverse areas from fundamental biology to cancer precision medicine. Here, we use a platform based on anchored droplets for drug screening. The response of spheroids of Ewing sarcoma (EwS) A673 cells to simultaneous or sequential combinations of etoposide and cisplatin was evaluated. This was done by culturing spheroids of EwS cells inside 500 nL droplets then merging them with secondary droplets containing fluorescent-barcoded drugs at different concentrations. Differences in EwS spheroid growth and viability were measured by microscopy. After drug exposure such measurements enabled estimation of their IC50 values, which were in agreement with values obtained in standard multiwell plates. Then, synergistic drug combination was evaluated. Sequential combination treatment of EwS with etoposide applied 24 h before cisplatin resulted in amplified synergistic effect. As such, droplet-based microfluidics offers the modularity required for evaluation of drug combinations.

2.
Phys Rev E ; 105(5-1): 054407, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35706238

RESUMO

Tissues are generally subjected to external stresses, a potential stimulus for their differentiation or remodeling. While single-cell rheology has been extensively studied leading to controversial results about nonlinear response, mechanical tissue behavior under external stress is still poorly understood, in particular, the way individual cell properties translate at the tissue level. Herein, using magnetic cells we were able to form perfectly monitored cellular aggregates (magnetic molding) and to deform them under controlled applied stresses over a wide range of timescales and amplitudes (magnetic rheometer). We explore the rheology of these minimal tissue models using both standard assays (creep and oscillatory response) as well as an innovative broad spectrum solicitation coupled with inference analysis thus being able to determine in a single experiment the best rheological model. We find that multicellular aggregates exhibit a power-law response with nonlinearities leading to tissue stiffening at high stress. Moreover, we reveal the contribution of intracellular (actin network) and intercellular components (cell-cell adhesions) in this aggregate rheology.


Assuntos
Actinas , Adesão Celular , Reologia
3.
Cancers (Basel) ; 14(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053529

RESUMO

A growing tumor is submitted to ever-evolving mechanical stress. Endoscopic procedures add additional constraints. However, the impact of mechanical forces on cancer progression is still debated. Herein, a set of magnetic methods is proposed to form tumor spheroids and to subject them to remote deformation, mimicking stent-imposed compression. Upon application of a permanent magnet, the magnetic tumor spheroids (formed from colon cancer cells or from glioblastoma cells) are compressed by 50% of their initial diameters. Such significant deformation triggers an increase in the spheroid proliferation for both cell lines, correlated with an increase in the number of proliferating cells toward its center and associated with an overexpression of the matrix metalloproteinase-9 (MMP-9). In vivo peritoneal injection of the spheroids made from colon cancer cells confirmed the increased aggressiveness of the compressed spheroids, with almost a doubling of the peritoneal cancer index (PCI), as compared with non-stimulated spheroids. Moreover, liver metastasis of labeled cells was observed only in animals grafted with stimulated spheroids. Altogether, these results demonstrate that a large compression of tumor spheroids enhances cancer proliferation and metastatic process and could have implications in clinical procedures where tumor compression plays a role.

4.
ACS Appl Bio Mater ; 3(10): 6802-6810, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-35019343

RESUMO

Tissue engineering aims to repair or replace deficient tissue by delivering constructs that mimic the native in vivo structure. One challenge in cardiac tissue engineering approaches is to achieve intrinsic cardiac organization, particularly the alignment of cardiomyocytes. Here, we propose a strategy for 3D manipulation and alignment of cardiomyocytes by combining magnetism and a hydrogel. The advantage of using magnetic forces is that they act remotely on the cells when these are endowed with magnetization via the internalization of magnetic nanoparticles. The magnetic actuation then allows obtaining, almost instantaneously and before gel transition, an aligned biomimetic cardiac tissue construct. Gel transition enables us to keep the cellular pattern once the magnetic field was removed. This cardiac tissue engineering approach was tested with both H9c2 cell line and primary cardiomyocytes, and with both a synthetic hydrogel and a natural one, Pluronic F-127 and fibrin, respectively. Key parameters of the anisotropic tissue formation were assessed. Hydrogel rheology is provided, and the impact of cell density and magnetic labeling on cell-cell alignment is assessed. Immunofluorescence confirms the presence of several cardiac markers upon chaining, demonstrating the functionality of the tissue-like cell alignment obtained via magnetic actuation.

5.
Nat Commun ; 8(1): 400, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900152

RESUMO

The ability to create a 3D tissue structure from individual cells and then to stimulate it at will is a major goal for both the biophysics and regenerative medicine communities. Here we show an integrated set of magnetic techniques that meet this challenge using embryonic stem cells (ESCs). We assessed the impact of magnetic nanoparticles internalization on ESCs viability, proliferation, pluripotency and differentiation profiles. We developed magnetic attractors capable of aggregating the cells remotely into a 3D embryoid body. This magnetic approach to embryoid body formation has no discernible impact on ESC differentiation pathways, as compared to the hanging drop method. It is also the base of the final magnetic device, composed of opposing magnetic attractors in order to form embryoid bodies in situ, then stretch them, and mechanically stimulate them at will. These stretched and cyclic purely mechanical stimulations were sufficient to drive ESCs differentiation towards the mesodermal cardiac pathway.The development of embryoid bodies that are responsive to external stimuli is of great interest in tissue engineering. Here, the authors culture embryonic stem cells with magnetic nanoparticles and show that the presence of magnetic fields could affect their aggregation and differentiation.


Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias/citologia , Animais , Diferenciação Celular , Sobrevivência Celular , Corpos Embrioides/citologia , Compostos Férricos/química , Magnetismo/instrumentação , Magnetismo/métodos , Nanopartículas de Magnetita/química , Masculino , Camundongos Endogâmicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...