Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(45): 42598-42609, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024690

RESUMO

Currently, we report the preparation of transition metal complexes Co(II), Ni(II), and Cu(II) of hydrazone Schiff base ligands, which are obtained by the condensation reaction of substituted salicylaldehyde and hydrazines. The synthesized hydrazone ligands and their metal complexes were characterized by spectroscopic methods such as Fourier transform infrared (FT-IR), UV-vis, nuclear magnetic resonance (1H NMR and C13 NMR), and mass spectrometry analyses. All of the quantum chemistry calculations were performed using DFT executed in the Gaussian 09 software package. The geometry was optimized by using the density functional theory (DFT) approximation at the B3LYP level with a basis set of 6-31G (d, p). There was excellent agreement between the FT-IR values obtained experimentally and those obtained theoretically for the test compounds. It is worth noting that none of the optimized geometries for any of the Schiff base and metal complexes had any eigenvalues that were negative, indicating that these geometries represent the true minimum feasible energy surfaces. We also analyzed the electrostatic potential of the molecule and NBO calculation at the same level of theory. Gauss View 6 was utilized for the file organization of the input data. Gauss View 6.0, Avogadro, and Chemcraft were used to determine the data. Additionally, synthesized compounds were screened for antimicrobial activity against Gram-negative bacteria (Salmonella typhi, Escherichia coli) and Gram-positive bacteria (Bacillus halodurans, Micrococcus luteus) and two fungal strains (Aspergillus flavus, Aspergillus niger). These research findings have established the potential of ligands and their metal complexes as antimicrobial agents. Additionally, the compounds demonstrated promising nonlinear optical (NLO) properties, with potential applications across a wide range of contemporary technologies.

2.
Brain Res Bull ; 125: 30-43, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27060612

RESUMO

Ginsenosides represent the major bioactive components of ginseng. These triterpenoid saponins have been shown to exert numerous beneficial effects on the human body. Recent evidences suggest that ginsenosides may be useful for the management and treatment of several diseases of the central nervous system (CNS). In particular, numerous in vitro and in vivo models have shown that ginsenosides can modulate numerous pharmacological effects on the brain, including attenuation of excitotoxicity, oxidative stress and neuroinflammation, maintenance of neurotransmitter balance, anti-apoptotic effects, and mitochondrial stabilization effects. Regulations of these pathophysiological mechanisms have been shown to improve cognitive function and protect the brain against several neurodegenerative diseases. This review will critically address the pharmacological effects and mechanisms of action of ginsenosides in the CNS, and particularly those associated with therapeutic efficacies in Parkinson's disease, Alzheimer's disease, Huntington's disease, and traumatic brain injury, and ischemia.


Assuntos
Ginsenosídeos/uso terapêutico , Doenças do Sistema Nervoso/terapia , Fármacos Neuroprotetores/uso terapêutico , Animais , Transtornos Cognitivos/tratamento farmacológico , Humanos , Doenças do Sistema Nervoso/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...