Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7321, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951946

RESUMO

The phase of the quantum-mechanical wave function can encode a topological structure with wide-ranging physical consequences, such as anomalous transport effects and the existence of edge states robust against perturbations. While this has been exhaustively demonstrated for electrons, properties associated with the elementary quasiparticles in magnetic materials are still underexplored. Here, we show theoretically and via inelastic neutron scattering experiments that the bulk ferromagnet Mn5Ge3 hosts gapped topological Dirac magnons. Although inversion symmetry prohibits a net Dzyaloshinskii-Moriya interaction in the unit cell, it is locally allowed and is responsible for the gap opening in the magnon spectrum. This gap is predicted and experimentally verified to close by rotating the magnetization away from the c-axis with an applied magnetic field. Hence, Mn5Ge3 realizes a gapped Dirac magnon material in three dimensions. Its tunability by chemical doping or by thin film nanostructuring defines an exciting new platform to explore and design topological magnons. More generally, our experimental route to verify and control the topological character of the magnons is applicable to bulk centrosymmetric hexagonal materials, which calls for systematic investigation.

2.
Phys Rev Lett ; 124(20): 206402, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32501104

RESUMO

Lead-halide perovskite (LHP) semiconductors are emergent optoelectronic materials with outstanding transport properties which are not yet fully understood. We find signatures of large polaron formation in the electronic structure of the inorganic LHP CsPbBr_{3} by means of angle-resolved photoelectron spectroscopy. The experimental valence band dispersion shows a hole effective mass of 0.26±0.02 m_{e}, 50% heavier than the bare mass m_{0}=0.17 m_{e} predicted by density functional theory. Calculations of the electron-phonon coupling indicate that phonon dressing of the carriers mainly occurs via distortions of the Pb-Br bond with a Fröhlich coupling parameter α=1.81. A good agreement with our experimental data is obtained within the Feynman polaron model, validating a viable theoretical method to predict the carrier effective mass of LHPs ab initio.

3.
Phys Rev Lett ; 124(10): 106402, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32216410

RESUMO

We report high-resolution angle-resolved photoemission measurements on single crystals of Pt_{2}HgSe_{3} grown by high-pressure synthesis. Our data reveal a gapped Dirac nodal line whose (001) projection separates the surface Brillouin zone in topological and trivial areas. In the nontrivial k-space range, we find surface states with multiple saddle points in the dispersion, resulting in two van Hove singularities in the surface density of states. Based on density-functional theory calculations, we identify these surface states as signatures of a topological crystalline state, which coexists with a weak topological phase.

4.
J Phys Condens Matter ; 29(46): 465901, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29064822

RESUMO

Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.

5.
J Chem Phys ; 144(1): 014103, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26747797

RESUMO

The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.

6.
J Chem Phys ; 139(21): 214110, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24320367

RESUMO

The recently developed self-consistent continuum solvation model (SCCS) [O. Andreussi, I. Dabo, and N. Marzari, J. Chem. Phys. 136, 064102 (2012)] is applied here to charged species in aqueous solutions. Describing ions in solution represents a great challenge because of the large electrostatic interactions between the solute and the solvent. The SCCS model is tested over 106 monocharged species, both cations and anions, and we demonstrate its flexibility, notwithstanding its much reduced set of parameters, to describe charged species in solution. Remarkably low mean absolute errors are obtained with values of 2.27 and 5.54 kcal/mol for cations and anions, respectively. These results are comparable or better than the state of the art to describe solvation of charged species in water. Finally, differences of behavior between cations and anions are discussed.


Assuntos
Íons/química , Água/química , Modelos Moleculares , Teoria Quântica , Eletricidade Estática , Termodinâmica
7.
Nat Mater ; 12(5): 439-44, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23377293

RESUMO

Quantum dots embedded within nanowires represent one of the most promising technologies for applications in quantum photonics. Whereas the top-down fabrication of such structures remains a technological challenge, their bottom-up fabrication through self-assembly is a potentially more powerful strategy. However, present approaches often yield quantum dots with large optical linewidths, making reproducibility of their physical properties difficult. We present a versatile quantum-dot-in-nanowire system that reproducibly self-assembles in core-shell GaAs/AlGaAs nanowires. The quantum dots form at the apex of a GaAs/AlGaAs interface, are highly stable, and can be positioned with nanometre precision relative to the nanowire centre. Unusually, their emission is blue-shifted relative to the lowest energy continuum states of the GaAs core. Large-scale electronic structure calculations show that the origin of the optical transitions lies in quantum confinement due to Al-rich barriers. By emitting in the red and self-assembling on silicon substrates, these quantum dots could therefore become building blocks for solid-state lighting devices and third-generation solar cells.

8.
Nat Mater ; 11(4): 294-300, 2012 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-22306771

RESUMO

The quest for materials capable of realizing the next generation of electronic and photonic devices continues to fuel research on the electronic, optical and vibrational properties of graphene. Few-layer graphene (FLG) flakes with less than ten layers each show a distinctive band structure. Thus, there is an increasing interest in the physics and applications of FLGs. Raman spectroscopy is one of the most useful and versatile tools to probe graphene samples. Here, we uncover the interlayer shear mode of FLGs, ranging from bilayer graphene (BLG) to bulk graphite, and suggest that the corresponding Raman peak measures the interlayer coupling. This peak scales from ~43 cm(-1) in bulk graphite to ~31 cm(-1) in BLG. Its low energy makes it sensitive to near-Dirac point quasiparticles. Similar shear modes are expected in all layered materials, providing a direct probe of interlayer interactions.

9.
Phys Rev Lett ; 105(10): 106601, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20867535

RESUMO

An extensive redistribution of spin density in TBrPP-Co molecules adsorbed on a Cu(111) surface is investigated by monitoring Kondo resonances at different locations on single molecules. Remarkably, the width of the Kondo resonance is found to be much larger on the organic ligands than on the central cobalt atom-reflecting enhanced spin-electron interactions on molecular orbitals. This unusual effect is explained by means of first-principles and numerical renormalization-group calculations highlighting the possibility to engineer spin polarization by exploiting interfacial charge transfer.

10.
Proc Natl Acad Sci U S A ; 105(29): 9886-91, 2008 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-18621710

RESUMO

Self-assembled monolayer-protected nanoparticles are promising candidates for applications, such as sensing and drug delivery, in which the molecular ligands' interactions with the surrounding environment play a crucial role. We recently showed that, when gold nanoparticles are coated with a binary mixture of immiscible ligands, ordered ribbon-like domains of alternating composition spontaneously form and that their width is comparable with the size of a single solvent molecule. It is usually assumed that nanoparticles' solubility depends solely on the core size and on the molecular composition of the ligand shell. Here, we show that this is not always the case. We find that the ligand shell morphology affects the solubility of these nanoparticles almost as much as the molecular composition. A possible explanation is offered through a molecular dynamics analysis of the surface energy of monolayers differing only in their domain structure. We find that the surface free energy of such model systems can vary significantly as a function of ordering, even at fixed composition. This combined experimental and theoretical study provides a unique insight into wetting phenomena at the nano- and subnanometer scale.

11.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...