Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 292: 122408, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36812801

RESUMO

Leukemias are a remarkably diverse group of malignancies originating from abnormal progenitor cells in the bone marrow. Leukemia subtypes are classified according to the cell type that has undergone neoplastic transformation using demanding and time-consuming methods. Alternative is Raman imaging that can be used both for living and fixed cells. However, considering the diversity of leukemic cell types and normal leukocytes, and the availability of different sample preparation protocols, the main objective of this work was to verify them for leukemia and normal blood cell samples for Raman imaging. The effect of glutaraldehyde (GA) fixation in a concentration gradient (0.1 %, 0.5 %, and 2.5 % GA) on the molecular structure of T-cell acute lymphoblastic leukemia (T-ALL) and peripheral blood mononuclear cells (PBMCs) was verified. Changes in the secondary structure of proteins within cells were indicated as the main effect of fixation, as shown by an increase in band intensity at 1041 cm-1, characteristic for in-plane δ(CH) deformation in phenylalanine (Phe). Different sensitivity of mononuclear and leukemic cells to fixation was observed. While the 0.1 % concentration of GA was too low to preserve the cell structure for an extended period of time, a GA concentration of 0.5 % seemed optimal for both normal and malignant cells. Chemical changes in PBMCs samples stored for 11 days were also investigated, which manifested in numerous modifications in the secondary structure of proteins and the content of nucleic acids. The impact of cell preculturing for 72 h after unbanking was verified, and there was no significant effect on the molecular structure of cells fixed with 0.5 % GA. In summary, the developed protocol for the preparation of samples for Raman imaging allows for the effective differentiation of fixed normal leukocytes from malignant T lymphoblasts.


Assuntos
Leucemia , Leucócitos Mononucleares , Humanos , Leucócitos , Leucemia/metabolismo , Diferenciação Celular
2.
Biochim Biophys Acta Mol Cell Res ; 1870(1): 119378, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36220452

RESUMO

Sulfhemoglobinemia is an incurable disease caused by an overdose of sulfur-containing drugs with oxidizing properties. Its diagnosis remains hindered due to the similarity of symptoms to other pathological state - methemoglobinemia, as well as contradictory information on the structure and characteristics of sulfhemoglobin. Herein, we present sulfhemoglobinemia model on living functional human erythrocytes, designed to recreate processes which could take place in a patient body in order to complement missing information and highlight distinctiveness of two hemoglobin (Hb) adducts formed after interaction with sulfur donors. Employed techniques, UV-Vis absorption, Raman, Fourier transformed infrared (FT-IR) and electronic circular dichroism (ECD) spectroscopies, allowed to distinguish and characterize Hb adduct with sulfur atom bounded directly to the iron ion (HbFeIII-SH), and irreversibly connected to the porphyrin ring (SHb - sulfhemoglobin). Presented herein results provided also new evidence on formation of both these hemoglobin adducts inside functional erythrocytes under oxidative conditions and during sulfur-containing drug presence, what can be further translated into future physiological studies. Moreover, we found that sulfur attachment to the porphyrin ring altered Hb structure and lead to changes in protein packing inside RBCs, eventually. Interestingly, measurement of blood drop smear by Raman spectroscopy occurred the most accurate method to differentiate HbFeIII-SH and SHb, indicating potential of this technique in sulfhemoglobinemia diagnosis.


Assuntos
Porfirinas , Sulfemoglobinemia , Humanos , Sulfa-Hemoglobina/análise , Sulfemoglobinemia/diagnóstico , Espectroscopia de Infravermelho com Transformada de Fourier , Hemoglobinas , Enxofre
3.
J Adv Res ; 41: 191-203, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36328748

RESUMO

INTRODUCTION: Human peripheral blood mononuclear cells (PBMCs) are a heterogeneous population of cells that includes T and B lymphocytes. The total number of lymphocytes and their percentage in the blood can be a marker for the diagnosis of several human diseases. Currently, cytometric methods are widely used to distinguish subtypes of leukocytes and quantify their number. These techniques use cell immunophenotyping, which is limited by the number of fluorochrome-labeled antibodies that can be applied simultaneously. OBJECTIVE: B and T lymphocytes were isolated from peripheral blood obtained from healthy human donors. METHODS: The immunomagnetic negative selection was used for the enrichment of B and T cells fractions, and their purity was assessed by flow cytometry. Isolated cells were fixed with 0.5% glutaraldehyde and measured using confocal Raman imaging. K-means cluster analysis, principal component analysis and partial least squares discriminant methods were applied for the identification of spectroscopic markers to distinguish B and T cells. HPLC was the reference method for identifying carotene in T cells. RESULTS: Reliable discrimination between T and B lymphocytes based on their spectral profile has been demonstrated using label-free Raman imaging and chemometric analysis. The presence of carotene in T lymphocytes (in addition to the previously reported in plasma) was confirmed and for the first time unequivocally identified as ß-carotene. In addition, the molecular features of the lymphocytes nuclei were found to support the discriminant analysis. It has been shown that although the presence of carotenoids in T cells depends on individual donor variability, the reliable differentiation between lymphocytes is possible based on Raman spectra collected from individual cells. CONCLUSIONS: This proves the potential of Raman spectroscopy in clinical diagnostics to automatically differentiate between cells that are an important component of our immune system.


Assuntos
Leucócitos Mononucleares , Linfócitos , Humanos , Análise Discriminante , Análise dos Mínimos Quadrados , Carotenoides
4.
Cancers (Basel) ; 13(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34771646

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common type of malignant neoplasms in the pediatric population. B-cell precursor ALLs (BCP-ALLs) are derived from the progenitors of B lymphocytes. Traditionally, risk factors stratifying therapy in ALL patients included age at diagnosis, initial leukocytosis, and the response to chemotherapy. Currently, treatment intensity is modified according to the presence of specific gene alterations in the leukemic genome. Raman imaging is a promising diagnostic tool, which enables the molecular characterization of cells and differentiation of subtypes of leukemia in clinical samples. This study aimed to characterize and distinguish cells isolated from the bone marrow of patients suffering from three subtypes of BCP-ALL, defined by gene rearrangements, i.e., BCR-ABL1 (Philadelphia-positive, t(9;22)), TEL-AML1 (t(12;21)) and TCF3-PBX1 (t(1;19)), using single-cell Raman imaging combined with multivariate statistical analysis. Spectra collected from clinical samples were compared with single-cell spectra of B-cells collected from healthy donors, constituting the control group. We demonstrated that Raman spectra of normal B cells strongly differ from spectra of their malignant counterparts, especially in the intensity of bands, which can be assigned to nucleic acids. We also showed that the identification of leukemia subtypes could be automated with the use of chemometric methods. Results prove the clinical suitability of Raman imaging for the identification of spectroscopic markers characterizing leukemia cells.

5.
Int J Mol Sci ; 22(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809183

RESUMO

Packed red blood cells (pRBCs), the most commonly transfused blood product, are exposed to environmental disruptions during storage in blood banks. In this study, temporal sequence of changes in the ion exchange in pRBCs was analyzed. Standard techniques commonly used in electrolyte measurements were implemented. The relationship between ion exchange and red blood cells (RBCs) morphology was assessed with use of atomic force microscopy with reference to morphological parameters. Variations observed in the Na+, K+, Cl-, H+, HCO3-, and lactate ions concentration show a complete picture of singly-charged ion changes in pRBCs during storage. Correlation between the rate of ion changes and blood group type, regarding the limitations of our research, suggested, that group 0 is the most sensitive to the time-dependent ionic changes. Additionally, the impact of irreversible changes in ion exchange on the RBCs membrane was observed in nanoscale. Results demonstrate that the level of ion leakage that leads to destructive alterations in biochemical and morphological properties of pRBCs depend on the storage timepoint.


Assuntos
Preservação de Sangue/métodos , Eritrócitos/metabolismo , Troca Iônica , Manejo de Espécimes/métodos , Carbonatos/metabolismo , Membrana Eritrocítica , Humanos , Íons/metabolismo , Ácido Láctico/metabolismo , Microscopia de Força Atômica , Potássio/metabolismo , Sódio/metabolismo
6.
Sci Rep ; 8(1): 2691, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426935

RESUMO

Localisation of metabolites in sorghum coleoptiles using Raman hyperspectral imaging analysis was compared in wild type plants and mutants that lack cyanogenic glucosides. This novel method allows high spatial resolution in situ localization by detecting functional groups associated with cyanogenic glucosides using vibrational spectroscopy. Raman hyperspectral imaging revealed that dhurrin was found mainly surrounding epidermal, cortical and vascular tissue, with the greatest amount in cortical tissue. Numerous "hotspots" demonstrated dhurrin to be located within both cell walls and cytoplasm adpressed towards the plasmamembrane and not in the vacuole as previously reported. The high concentration of dhurrin in the outer cortical and epidermal cell layers is consistent with its role in defence against herbivory. This demonstrates the ability of Raman hyperspectral imaging to locate cyanogenic glucosides in intact tissues, avoiding possible perturbations and imprecision that may accompany methods that rely on bulk tissue extraction methods, such as protoplast isolation.


Assuntos
Nitrilas/metabolismo , Sorghum/metabolismo , Análise Espectral Raman/métodos , Ração Animal/análise , Citoplasma/metabolismo , Grão Comestível/metabolismo , Glucosídeos/metabolismo , Glicosídeos/metabolismo , Herbivoria , Cianeto de Hidrogênio/metabolismo , Vacúolos/metabolismo
7.
Sci Rep ; 7(1): 8945, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827720

RESUMO

Confocal Raman spectroscopy (CRS) can provide information about oocyte competency through measurement of changes in the macromolecular architecture during oocyte development and maturation. Hitherto most spectroscopic studies have been limited to fixed oocytes due to the inherent difficulties working with live cells. Here we report the first three-dimensional images of living murine oocytes using CRS. We show that fixation induces significant changes in the macromolecular chemistry compared to living oocytes. A band at 1602 cm-1, assigned to a marker for mitochondria function was found in living oocytes but absent from fixed oocytes providing an in vivo marker. Fixation resulted in significant changes in protein and nucleic acid bands and the spatial distribution of organelles. Raman imaging of Metaphase I and II (MI, MII) and germinal vesicle stage oocytes showed changes in nuclear organisation and cytoplasm macromolecular architecture during these development and maturation stages related to changes in chromosome condensation, mitochondria aggregation and lipid droplet numbers.


Assuntos
Mitocôndrias/ultraestrutura , Oócitos/crescimento & desenvolvimento , Oócitos/ultraestrutura , Animais , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Feminino , Meiose , Camundongos , Mitocôndrias/metabolismo , Microscopia Óptica não Linear , Oócitos/metabolismo , Análise Espectral Raman , Fixação de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...