Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 241: 117661, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37980992

RESUMO

Two advanced oxidation processes (AOPs), namely ozone/H2O2 and UV/H2O2, were tested at pilot scale as zero-liquid-discharge alternative treatments for the removal of microbiological (bacteria and viruses), chemical (compounds of emerging concern (CECs)) and genotoxic responses from tertiary municipal wastewater for indirect potable reuse (IPR). The AOP treated effluents were further subjected to granular activated carbon (GAC) adsorption and UV disinfection, following the concept of multiple treatment barriers. As a reference, a consolidated advanced wastewater treatment train consisting of ultrafiltration, UV disinfection, and reverse osmosis (RO) was also employed. The results showed that, for the same electrical energy applied, the ozone/H2O2 treatment was more effective than the UV/H2O2 treatment in removing CECs. Specifically, the ozone/H2O2 treatment, intensified by high pressure and high mixing, achieved an average CECs removal efficiency higher than UV/H2O2 (66.8% with respect to 18.4%). The subsequent GAC adsorption step, applied downstream the AOPs, further improved the removal efficiency of the whole treatment trains, achieving rates of 98.5% and 96.8% for the ozone/H2O2 and UV/H2O2 treatments, respectively. In contrast, the ultrafiltration step of the reference treatment train only achieved a removal percentage of 22.5%, which increased to 99% when reverse osmosis was used as the final step. Microbiological investigations showed that all three wastewater treatment lines displayed good performance in the complete removal of regulated and optional parameters according to both national and the European Directive 2020/2184. Only P. aeruginosa resulted resistant to all treatments with a higher removal by UV/H2O2 when higher UV dose was applied. In addition, E. coli STEC/VTEC and enteric viruses, were found to be completely removed in all tested treatments and no genotoxic activity was detected even after a 1000-fold concentration. The obtained results suggest that the investigated treatments are suitable for groundwater recharge to be used as a potable water source being such a procedure an IPR. The intensified ozone/H2O2 or UV/H2O2 treatments can be conveniently incorporated into a multi-barrier zero-liquid-discharge scheme, thus avoiding the management issues associated with the retentate of the conventional scheme that uses reverse osmosis. By including the chemical cost associated with using 11-12 mg/L of H2O2 in the cost calculations, the overall operational cost (energy plus chemical) required to achieve 50% average CECs removal in tertiary effluent for an hypothetical full-scale plant of 250 m3/h (or 25,000 inhabitants) was 0.183 €/m3 and 0.425 €/m3 for ozone/H2O2 and UV/H2O2 treatment train, respectively.


Assuntos
Água Potável , Ozônio , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Peróxido de Hidrogênio/química , Escherichia coli , Oxirredução , Carvão Vegetal , Purificação da Água/métodos , Ozônio/química , Poluentes Químicos da Água/química , Raios Ultravioleta
2.
Ann Ig ; 30(1): 34-43, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29215129

RESUMO

In most regions of the world, safeguarding groundwater resources is a serious issue, particularly in coastal areas where groundwater is the main water source for drinking, irrigation and industry. Water availability depends on climate, topography and geology. The aim of this paper is to evaluate aquifer recharge as a possible strategy to relieve water resource scarcity. Natural aquifer recharge is defined as the downward flow of water reaching the water table, increasing the groundwater reservoir. Hydro-meteorological factors (rainfall, evapotranspiration and runoff) may alter natural recharge processes. Artificial aquifer recharge is a process by which surface water is introduced with artificial systems underground to fill an aquifer. As a consequence of global warming that has increased the frequency and severity of natural disasters like the drought, the impacts of climate change and seasonality, the artificial recharge has been considered as a viable option. Different direct and indirect techniques can be used, and the choice depends on the hydrologic characteristics of a specific area. In Italy, Legislative Decree no. 152/06 plans artificial aquifer recharge as an additional measure in water management, and Decree no. 100/2016 establishes quantitative and qualitative conditions for recharge. Many projects examine aquifer recharge, such us WADIS-MAR in the southern Mediterranean region, WARBO in Italy and municipal wastewater treatment project in Apulia, a southern Italian region. However, aside from groundwater recharge, the community must foster a spirit of cooperation to manage groundwater as a sustainable resource.


Assuntos
Conservação dos Recursos Hídricos/legislação & jurisprudência , Conservação dos Recursos Hídricos/métodos , Água Subterrânea , Itália
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...