Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 11(42): 8296-312, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26356800

RESUMO

We present extensive experimental and theoretical investigations on the structure, phase behavior, dynamics and rheology of model soft-hard colloidal mixtures realized with large, multiarm star polymers as the soft component and smaller, compact stars as the hard one. The number and length of the arms in star polymers control their softness, whereas the size ratio, the overall density and the composition are additional parameters varied for the mixtures. A coarse-grained theoretical strategy is employed to predict the structure of the systems as well as their ergodicity properties on the basis of mode coupling theory, for comparison with rheological measurements on the samples. We discovered that dynamically arrested star-polymer solutions recover their ergodicity upon addition of colloidal additives. At the same time the system displays demixing instability, and the binodal of the latter meets the glass line in a way that leads, upon addition of a sufficient amount of colloidal particles, to an arrested phase separation and reentrant solidification. We present evidence for a subsequent solid-to-solid transition well within the region of arrested phase separation, attributed to a hard-sphere-mixture type of glass, due to osmotic shrinkage of the stars at high colloidal particle concentrations. We systematically investigated the interplay of star functionality and size ratio with glass melting and demixing, and rationalized our findings by the depletion of the big stars due to the smaller colloids. This new depletion potential in which, contrary to the classic colloid-polymer case, the hard component depletes the soft one, has unique and novel characteristics and allows the calculation of phase diagrams for such mixtures. This work covers a broad range of soft-hard colloidal mixture compositions in which the soft component exceeds the hard one in size and provides general guidelines for controlling the properties of such complex mixtures.

2.
Phys Rev Lett ; 111(20): 208301, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24289711

RESUMO

By employing rheological experiments, mode coupling theory, and computer simulations based on realistic coarse-grained models, we investigate the effects of small, hard colloids on the glassy states formed by large, soft colloids. Multiarm star polymers mimic hard and soft colloids by appropriately varying the number and size of their arms. The addition of hard colloids leads, depending on their concentration, to either melting of the soft glass or the emergence of two distinct glassy states. We explain our findings by depletion of the colloids adjacent to the stars, which leads to an arrested phase separation when the repulsive glass line meets the demixing binodal. The parameter-free agreement between experiment, theory, and simulations suggests the generic nature of our results and opens the route for designing soft-hard colloidal composites with tunable rheology.

3.
J Chem Phys ; 137(1): 014902, 2012 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-22779678

RESUMO

We consider mixtures of self-avoiding multiarm star polymers with hard colloids that are smaller than the star polymer size. By employing computer simulations, and by extending previous theoretical approaches, developed for the opposite limit of small star polymers [A. Jusufi et al., J. Phys.: Condens. Matter 13, 6177 (2001)], we coarse-grain the mixture by deriving an effective cross-interaction between the unlike species. The excellent agreement between theory and simulation for all size ratios examined demonstrates that the theoretical approaches developed for the colloidal limit can be successfully modified to maintain their validity also for the present case of the protein limit, in contrast to the situation for mixtures of colloids and linear polymers. We further analyze, on the basis of the derived interactions, the non-additivity parameter of the mixture as a function of size ratio and star functionality and delineate the regions in which we expect mixing as opposed to demixing behavior. Our results are relevant for the study of star-colloid nanocomposites and pave the way for further investigations of the structure and thermodynamics of the same.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...