Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33418484

RESUMO

Prostamide/prostaglandin F synthase (PM/PGFS) is an enzyme with very narrow substrate specificity and is dedicated to the biosynthesis of prostamide F2α and prostaglandin F2α (PGF2α.). The importance of this enzyme, relative to the aldo-keto reductase (AKR) series, in providing functional tissue prostamide F2α levels was determined by creating a line of PM/PGFS gene deleted mice. Deletion of the gene encoding PM/PGFS (Fam213b / Prxl2b) was accomplished by a two exon disruption. Prostamide F2α levels in wild type (WT) and PM/PGFS knock-out (KO) mice were determined by LC/MS/MS. Deletion of Fam213b (Prxl2b) had no observed effect on behavior, appetite, or fertility. In contrast, tonometrically measured intraocular pressure was significantly elevated by approximately 4 mmHg in PM/PGFS KO mice compared to littermate WT mice. Outflow facility was measured in enucleated mouse eyes using the iPerfusion system. No effect on pressure dependent outflow facility occurred, which is consistent with the effects of prostamide F2α and PGF2α increasing outflow through the unconventional pathway. The elevation of intraocular pressure caused by deletion of the gene encoding the PM/PGFS enzyme likely results from a diversion of the endoperoxide precursor pathway to provide increased levels of those prostanoids known to raise intraocular pressure, namely prostaglandin D2 (PGD2) and thromboxane A2 (TxA2). It follows that PM/PGFS may serve an important regulatory role in the eye by providing PGF2α and prostamide F2α to constrain the influence of those prostanoids that raise intraocular pressure.


Assuntos
Dinoprosta/metabolismo , Dinoprostona/análogos & derivados , Deleção de Genes , Hidroxiprostaglandina Desidrogenases/metabolismo , Animais , Cromatografia Líquida , Dinoprostona/metabolismo , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Hidroxiprostaglandina Desidrogenases/genética , Pressão Intraocular , Masculino , Camundongos , Espectrometria de Massas em Tandem , Tonometria Ocular
2.
Cells ; 9(5)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443626

RESUMO

Diverse metabolic disorders have been associated with an alteration of N-acylethanolamine (NAE) levels. These bioactive lipids are synthesized mainly by N-acylphosphatidylethanolamine-selective phospholipase D (NAPE-PLD) and influence host metabolism. We have previously discovered that NAPE-PLD in the intestine and adipose tissue is connected to the pathophysiology of obesity. However, the physiological function of NAPE-PLD in the liver remains to be deciphered. To study the role of liver NAPE-PLD on metabolism, we generated a new mouse model of inducible Napepld hepatocyte-specific deletion (Napepld∆Hep mice). In this study, we report that Napepld∆Hep mice develop a high-fat diet-like phenotype, characterized by an increased fat mass gain, hepatic steatosis and we show that Napepld∆Hep mice are more sensitive to liver inflammation. We also demonstrate that the role of liver NAPE-PLD goes beyond the mere synthesis of NAEs, since the deletion of NAPE-PLD is associated with a marked modification of various bioactive lipids involved in host homeostasis such as oxysterols and bile acids. Collectively these data suggest that NAPE-PLD in hepatocytes is a key regulator of liver bioactive lipid synthesis and a dysregulation of this enzyme leads to metabolic complications. Therefore, deepening our understanding of the regulation of NAPE-PLD could be crucial to tackle obesity and related comorbidities.


Assuntos
Metabolismo dos Lipídeos , Fígado/enzimologia , Fígado/metabolismo , Fosfolipase D/metabolismo , Animais , Dieta Hiperlipídica , Deleção de Genes , Hepatócitos/enzimologia , Inflamação/enzimologia , Inflamação/patologia , Camundongos Endogâmicos C57BL , Camundongos Obesos , Especificidade de Órgãos , Fenótipo , Fosfolipase D/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Sci Rep ; 8(1): 13715, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194313

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

4.
Nat Rev Drug Discov ; 17(9): 688, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30160249

RESUMO

This corrects the article DOI: 10.1038/nrd.2018.115.

5.
Front Pharmacol ; 7: 341, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27757083

RESUMO

Anecdotal and scientific evidence suggests that Cannabis use may be beneficial in inflammatory bowel disease (IBD) patients. Here, we have investigated the effect of a standardized Cannabis sativa extract with high content of cannabidiol (CBD), here named CBD BDS for "CBD botanical drug substance," on mucosal inflammation and hypermotility in mouse models of intestinal inflammation. Colitis was induced in mice by intracolonic administration of dinitrobenzenesulfonic acid (DNBS). Motility was evaluated in the experimental model of intestinal hypermotility induced by irritant croton oil. CBD BDS or pure CBD were given - either intraperitoneally or by oral gavage - after the inflammatory insult (curative protocol). The amounts of CBD in the colon, brain, and liver after the oral treatments were measured by high-performance liquid chromatography coupled to ion trap-time of flight mass spectrometry. CBD BDS, both when given intraperitoneally and by oral gavage, decreased the extent of the damage (as revealed by the decrease in the colon weight/length ratio and myeloperoxidase activity) in the DNBS model of colitis. It also reduced intestinal hypermotility (at doses lower than those required to affect transit in healthy mice) in the croton oil model of intestinal hypermotility. Under the same experimental conditions, pure CBD did not ameliorate colitis while it normalized croton oil-induced hypermotility when given intraperitoneally (in a dose-related fashion) or orally (only at one dose). In conclusion, CBD BDS, given after the inflammatory insult, attenuates injury and motility in intestinal models of inflammation. These findings sustain the rationale of combining CBD with other minor Cannabis constituents and support the clinical development of CBD BDS for IBD treatment.

6.
Pharmacol Res ; 113(Pt A): 199-208, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27498155

RESUMO

Historical and scientific evidence suggests that Cannabis use has immunomodulatory and anti-inflammatory effects. We have here investigated the effect of the non-psychotropic phytocannabinoid Δ9-tetrahydrocannabivarin (THCV) and of a Cannabis sativa extract with high (64.8%) content in THCV (THCV-BDS) on nitric oxide (NO) production, and on cannabinoid and transient receptor potential (TRP) channel expression in lipopolysaccharide (LPS)-stimulated murine peritoneal macrophages. THCV-BDS and THCV exhibited similar affinity in radioligand binding assays for CB1 and CB2 receptors, and inhibited, via CB2 but not CB1 cannabinoid receptors, nitrite production evoked by LPS in peritoneal macrophages. THCV down-regulated the over-expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and interleukin 1ß (IL-1ß) proteins induced by LPS. Furthermore, THCV counteracted LPS-induced up-regulation of CB1 receptors, without affecting the changes in CB2, TRPV2 or TRPV4 mRNA expression caused by LPS. Other TRP channels, namely, TRPA1, TRPV1, TRPV3 and TRPM8 were poorly expressed or undetectable in both unstimulated and LPS-challenged macrophages. It is concluded that THCV - via CB2 receptor activation - inhibits nitrite production in macrophages. The effect of this phytocannabinoid was associated with a down-regulation of CB1, but not CB2 or TRP channel mRNA expression.


Assuntos
Canabinoides/farmacologia , Cannabis/química , Dronabinol/análogos & derivados , Macrófagos Peritoneais/efeitos dos fármacos , Nitritos/metabolismo , Extratos Vegetais/farmacologia , Animais , Células CHO , Linhagem Celular , Cricetulus , Ciclo-Oxigenase 2/metabolismo , Dronabinol/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , RNA Mensageiro/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Regulação para Cima/efeitos dos fármacos
7.
Pharmacol Res ; 111: 600-609, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27436148

RESUMO

Orexin 1 (OX-1R) and cannabinoid receptor (CB1R) belong to the superfamily of G-protein-coupled receptors (GPCRs) and are mostly coupled to Gq and Gi/o proteins, respectively. In vitro studies in host cells over-expressing OX-1R and CB1R revealed a functional interaction between these receptors, through either their ability to form heteromers or the property for OX-1R to trigger the biosynthesis of 2-arachidonoylglycerol (2-AG), an endogenous CB1R ligand. Since: i) OX-1R and CB1R co-espression has been described at postsynaptc sites in hypothalamic circuits involved the regulation of energy homeostasis, and ii) increased orexin-A (OX-A) and 2-AG levels occur in hypothalamic neurons during obesity, we sought here to investigate the OX-1R/CB1R interaction in embryonic mouse hypothalamic NPY/AgRP mHypoE-N41 neurons which express, constitutively, both receptors. Treatment of mHypoE-N41 cells with OX-A (0.1-0.3µM), but not with the selective CB1R agonist, arachidonyl-2-chloroethylamide (ACEA; 0.1-0.3µM), transiently elevated [Ca(2+)]i. Incubation with a subeffective dose of OX-A (0.1µM)+ACEA (0.1µM) led to stronger and longer lasting elevation of [Ca(2+)]i, antagonized by OX-1R or CB1R antagonism with SB-334867 or AM251, respectively. FRET and co-immunoprecipitation experiments showed the formation of OX-1R/CB1R heteromers after incubation with OX-A (0.2µM), or OX-A (0.1µM)+ACEA (0.1µM), but not after ACEA (0.2µM), in a manner antagonized by SB-334867 or AM251. OX-A (0.2µM) or OX-A (0.1µM)+ACEA (0.1µM) also led to 2-AG biosynthesis. Finally, a stronger activation of ERK1/2(Thr202/185) phosphorylation in comparison to basal or each agonist alone (0.1-0.2µM), was induced by incubation with OX-A (0.1µM)+ACEA (0.1µM), again in a manner prevented by OX-1R or CB1R antagonism. We suggest that OX-A, alone at effective concentrations on [Ca(2+)]i, or in combination with ACEA, at subeffective concentrations, triggers intracellular signaling events via the formation of OX-1R/CB1R heteromers and an autocrine loop mediated by 2-AG.


Assuntos
Ácidos Araquidônicos/farmacologia , Hipotálamo/citologia , Receptores de Orexina/metabolismo , Orexinas/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Animais , Ácidos Araquidônicos/biossíntese , Cálcio/metabolismo , Linhagem Celular , Endocanabinoides/biossíntese , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glicerídeos/biossíntese , Camundongos , Fosforilação/efeitos dos fármacos
8.
CNS Neurol Disord Drug Targets ; 15(8): 987-994, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27071783

RESUMO

Eleven compounds belonging to the chalcone family were tested for their ability to activate and subsequently desensitize the rat transient receptor potential ankyrin 1 cation channel, subfamily A, member 1 (TRPA1) in a heterologous expression system. Four of the tested compounds were more potent than the TRPA1 agonist mustard oil, and showed also a strong desensitizing effect. Some chalcone compounds were not pungent in the eye-wiping assay and quite remarkably inhibited in a long-lasting and dose-dependent manner the pain response in the formalin test. Chalcones can be considered as novel candidates for the development of antihyperalgesic preparations based on TRPA1 desensitization.


Assuntos
Analgésicos/química , Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Chalconas/uso terapêutico , Inflamação/tratamento farmacológico , Dor/tratamento farmacológico , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Anti-Inflamatórios/química , Cálcio/metabolismo , Chalconas/química , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Formaldeído/toxicidade , Células HEK293 , Humanos , Inflamação/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mostardeira/toxicidade , Dor/induzido quimicamente , Medição da Dor , Óleos de Plantas/toxicidade , Ratos , Relação Estrutura-Atividade , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/química
9.
Expert Opin Ther Targets ; 5(3): 349-362, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12540270

RESUMO

Changes in the levels of either the cannabinoid CB(1) receptors or of their endogenous ligands, anandamide and 2-arachidonoylglycerol, appear to be casual or consequential in many neurological disorders. Several examples of how such diseases may be treated by substances capable of selectively manipulating endocannabinoid levels and action are presented, using animal models of neuropathological conditions, such as motor disorders, multiple sclerosis, neuronal damage, chronic and inflammatory pain, anorexia, cachexia and motivational disturbances. These examples indicate that new therapeutic agents, lacking the undesirable psychotropic side effects of Cannabis, may be developed from current studies on the endocannabinoid system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...