Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant ; 10(5): 709-720, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28343913

RESUMO

Protein modification by SUMO modulates essential biological processes in eukaryotes. SUMOylation is facilitated by sequential action of the E1-activating, E2-conjugating, and E3-ligase enzymes. In plants, SUMO regulates plant development and stress responses, which are key determinants in agricultural productivity. To generate additional tools for advancing our knowledge about the SUMO biology, we have developed a strategy for inhibiting in vivo SUMO conjugation based on disruption of SUMO E1-E2 interactions through expression of E1 SAE2UFDCt domain. Targeted mutagenesis and phylogenetic analyses revealed that this inhibition involves a short motif in SAE2UFDCt highly divergent across kingdoms. Transgenic plants expressing the SAE2UFDCt domain displayed dose-dependent inhibition of SUMO conjugation, and have revealed the existence of a post-transcriptional mechanism that regulates SUMO E2 conjugating enzyme levels. Interestingly, these transgenic plants displayed increased susceptibility to necrotrophic fungal infections by Botrytis cinerea and Plectosphaerella cucumerina. Early after fungal inoculation, host SUMO conjugation was post-transcriptionally downregulated, suggesting that targeting SUMOylation machinery could constitute a novel mechanism for fungal pathogenicity. These findings support the role of SUMOylation as a mechanism involved in plant protection from environmental stresses. In addition, the strategy for inhibiting SUMO conjugation in vivo described in this study might be applicable in important crop plants and other non-plant organisms regardless of their genetic complexity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Doenças das Plantas/microbiologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Ascomicetos/fisiologia , Botrytis/fisiologia , Regulação da Expressão Gênica de Plantas , Mutagênese , Doenças das Plantas/genética , Plantas Geneticamente Modificadas , Domínios Proteicos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/antagonistas & inibidores , Complexos Ubiquitina-Proteína Ligase/metabolismo
2.
J Exp Bot ; 67(18): 5429-5445, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27543604

RESUMO

Grapevine (Vitis vinifera L.) is a species well known for its adaptation to radiation. However, photomorphogenic factors related to UV-B responses have not been molecularly characterized. We cloned and studied the role of UV-B RECEPTOR (UVR1), ELONGATED HYPOCOTYL 5 (HY5), and HY5 HOMOLOGUE (HYH) from V. vinifera We performed gene functional characterizations, generated co-expression networks, and tested them in different environmental conditions. These genes complemented the Arabidopsis uvr8 and hy5 mutants in morphological and secondary metabolic responses to radiation. We combined microarray and RNA sequencing (RNA-seq) data with promoter inspections to identify HY5 and HYH putative target genes and their DNA binding preferences. Despite sharing a large set of common co-expressed genes, we found different hierarchies for HY5 and HYH depending on the organ and stress condition, reflecting both co-operative and partially redundant roles. New candidate UV-B gene markers were supported by the presence of HY5-binding sites. These included a set of flavonol-related genes that were up-regulated in a HY5 transient expression assay. We irradiated in vitro plantlets and fruits from old potted vines with high and low UV-B exposures and followed the accumulation of flavonols and changes in gene expression in comparison with non-irradiated conditions. UVR1, HY5, and HYH expression varied with organ, developmental stage, and type of radiation. Surprisingly, UVR1 expression was modulated by shading and temperature in berries, but not by UV-B radiation. We propose that the UV-B response machinery favours berry flavonol accumulation through the activation of HY5 and HYH at different developmental stages at both high and low UV-B exposures.


Assuntos
Flavonóis/metabolismo , Proteínas de Plantas/fisiologia , Transdução de Sinais/efeitos da radiação , Fatores de Transcrição/fisiologia , Vitis/efeitos da radiação , Clonagem Molecular , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas/genética , Genes de Plantas/fisiologia , Transdução de Sinais/fisiologia , Raios Ultravioleta , Regulação para Cima/fisiologia , Regulação para Cima/efeitos da radiação , Vitis/metabolismo , Vitis/fisiologia
3.
Methods Mol Biol ; 1450: 135-50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27424751

RESUMO

Different studies point to an enrichment in SUMO conjugation in the cell nucleus, although non-nuclear SUMO targets also exist. In general, the study of subcellular localization of proteins is essential for understanding their function within a cell. Fluorescence microscopy is a powerful tool for studying subcellular protein partitioning in living cells, since fluorescent proteins can be fused to proteins of interest to determine their localization. Subcellular distribution of proteins can be influenced by binding to other biomolecules and by posttranslational modifications. Sometimes these changes affect only a portion of the protein pool or have a partial effect, and a quantitative evaluation of fluorescence images is required to identify protein redistribution among subcellular compartments. In order to obtain accurate data about the relative subcellular distribution of SUMO conjugation machinery members, and to identify the molecular determinants involved in their localization, we have applied quantitative confocal microscopy imaging. In this chapter, we will describe the fluorescent protein fusions used in these experiments, and how to measure, evaluate, and compare average fluorescence intensities in cellular compartments by image-based analysis. We show the distribution of some components of the Arabidopsis SUMOylation machinery in epidermal onion cells and how they change their distribution in the presence of interacting partners or even when its activity is affected.


Assuntos
Proteínas de Arabidopsis/genética , Biologia Molecular/métodos , Processamento de Proteína Pós-Traducional/genética , Sumoilação/genética , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Microscopia Confocal , Microscopia de Fluorescência , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...