Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0306938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38968224

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0279672.].

2.
PLoS One ; 19(2): e0279672, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38349911

RESUMO

Understanding the relationship between a species feeding strategy and its environment (trophic ecology) is critical to assess environmental requirements and improve management policies. However, measuring trophic interactions remains challenging. Among the available methods, quantifying the plant composition of a species' diet indicates how species use their environment and their associated niche overlap. Nevertheless, most studies focusing on herbivore trophic ecology ignore the influence that landscape variability may have. Here, we explored how landscape variability influences diet composition through niche overlap. We used eDNA metabarcoding to quantify the diet composition of two large herbivores of the Bialowieza Forest, red deer (Cervus elaphus) and European bison (Bison bonasus) to investigate how increasing habitat quality (i.e. higher abundance of deciduous forage species) and predation risk (i.e. density of wolf in the area) influence their diet composition and niche partitioning. Our findings indicate diet composition is non-homogeneous across the landscape, both within and between species. Red deer showed greater diet variability and lower niche overlap within species compared to bison. We detected a reduction of niche overlap for red deer with increasing predation risk, leading to more dissimilar diets, suggesting their feeding behaviour is affected by wolf presence. This correlation was not found for bison, which are rarely predated by wolf. Higher habitat quality was associated with higher niche overlap only within bison, probably due to their suboptimal feeding strategy as browsers. These results show the importance of integrating environment-induced diet variation in studies aimed at determining the landscape usage or niche overlap of a species.


Assuntos
Bison , Cervos , Lobos , Animais , Herbivoria , Bison/genética , Comportamento Alimentar , Ecossistema
3.
Mol Ecol ; 33(3): e17227, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38018770

RESUMO

Many avian species endemic to Aotearoa New Zealand were driven to extinction or reduced to relict populations following successive waves of human arrival, due to hunting, habitat destruction and the introduction of mammalian predators. Among the affected species were the large flightless South Island takahe (Porphyrio hochstetteri) and the moho (North Island takahe; P. mantelli), with the latter rendered extinct and the former reduced to a single relictual population. Little is known about the evolutionary history of these species prior to their decline and/or extinction. Here we sequenced mitochondrial genomes from takahe and moho subfossils (12 takahe and 4 moho) and retrieved comparable sequence data from takahe museum skins (n = 5) and contemporary individuals (n = 17) to examine the phylogeny and recent evolutionary history of these species. Our analyses suggest that prehistoric takahe populations lacked deep phylogeographic structure, in contrast to moho, which exhibited significant spatial genetic structure, albeit based on limited sample sizes (n = 4). Temporal genetic comparisons show that takahe have lost much of their mitochondrial genetic diversity, likely due to a sudden demographic decline soon after human arrival (~750 years ago). Time-calibrated phylogenetic analyses strongly support a sister species relationship between takahe and moho, suggesting these flightless taxa diverged around 1.5 million years ago, following a single colonisation of New Zealand by a flighted Porphyrio ancestor approximately 4 million years ago. This study highlights the utility of palaeogenetic approaches for informing the conservation and systematic understanding of endangered species whose ranges have been severely restricted by anthropogenic impacts.


Assuntos
Genoma Mitocondrial , Animais , Evolução Biológica , Aves/genética , DNA Mitocondrial/genética , Mamíferos/genética , Nova Zelândia , Filogenia
4.
Sci Rep ; 11(1): 8876, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893381

RESUMO

Stomach content analyses are a valuable tool in human forensic science to interpret perimortem events. While the identification of food components of plant and animal origin has traditionally been conducted by macro- and microscopical approaches in case of incomplete digestion, molecular methods provide the potential to increase sensitivity and taxonomic resolution. In particular, DNA metabarcoding (PCR-amplification and next generation sequencing of complex DNA mixtures) has seen a rapid growth in the field of wildlife ecology to assess species' diets from faecal and gastric samples. Despite clear advantages, molecular approaches have not yet been established in routine human forensics to investigate the last meal components of deceased persons. In this pilot study we applied for the first time a DNA metabarcoding approach to assess both plant and vertebrate components of 48 human stomach content samples taken during medicolegal autopsies. We obtained a final dataset with 34 vertebrate and 124 vegetal unique sequences, that were clustered to 9 and 33 operational taxonomic units (OTUs), respectively. Our results suggest that this approach can provide crucial information about circumstances preceding death, and open promising perspectives for biomedical dietary surveys based on digested food items found in the gastrointestinal tract.


Assuntos
Conteúdo Gastrointestinal , Refeições , Código de Barras de DNA Taxonômico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Projetos Piloto
5.
Front Microbiol ; 9: 2612, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429840

RESUMO

The soil microbiome is a complex living network that plays essential roles in agricultural systems, regardless of the level of intensification. However, the effects of agricultural management on the soil microbiome and the association with plant productivity remain largely unclear. Here, we studied the responses of three soil systems displaying distinct levels of agriculture intensiveness (i.e., natural, organic, and conventional soil management regimes) to experimentally manipulated organic farming amendments (i.e., dung and earthworms). We aimed at (i) identifying the effect on plant productivity and (ii) elucidating the degree of shifts in bacterial communities in response to the applied organic amendments. We found plant productivity to be lower with increasing agricultural intensification. Bacterial communities shifted distinctively for each soil management regime to the organic amendments applied. In brief, greater changes were observed in the Conventional management comparatively to the Organic and Natural management, an effect largely driven by dung addition. Moreover, we found evidence that the level of agricultural intensiveness also affects the timespan for these shifts. For instance, while the Natural system reached a relatively stable community composition before the end of the experiment, treatments on the conventional soil management regime did not. Random forest analyses further revealed an increasing impact of introduced taxa from dung addition aligned with increasing agricultural intensification. These analyses suggested that earthworms regulate the introduction of species from dung into the soil bacterial community. Collectively, our results contribute to a better understanding of the outcomes of organic amendments on soils under distinct levels of agriculture intensiveness, with implications for further development in soil restorations practices.

6.
Mol Biol Evol ; 33(6): 1517-27, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26944704

RESUMO

The nearly neutral theory of molecular evolution predicts that small populations should accumulate deleterious mutations at a faster rate than large populations. The analysis of nonsynonymous (dN) versus synonymous (dS) substitution rates in birds versus mammals, however, has provided contradictory results, questioning the generality of the nearly neutral theory. Here we analyzed the impact of life history traits, taken as proxies of the effective population size, on molecular evolutionary and population genetic processes in amniotes, including the so far neglected reptiles. We report a strong effect of species body mass, longevity, and age of sexual maturity on genome-wide patterns of polymorphism and divergence across the major groups of amniotes, in agreement with the nearly neutral theory. Our results indicate that the rate of protein evolution in amniotes is determined in the first place by the efficiency of purifying selection against deleterious mutations-and this is true of both radical and conservative amino acid changes. Interestingly, the among-species distribution of dN/dS in birds did not follow this general trend: dN/dS was not higher in large, long-lived than in small, short-lived species of birds. We show that this unexpected pattern is not due to a more narrow range of life history traits, a lack of correlation between traits and Ne, or a peculiar distribution of fitness effects of mutations in birds. Our analysis therefore highlights the bird dN/dS ratio as a molecular evolutionary paradox and a challenge for future research.


Assuntos
Evolução Molecular , Características de História de Vida , Modelos Genéticos , Análise de Sequência de DNA/métodos , Animais , Evolução Biológica , Aves/genética , Bases de Dados de Ácidos Nucleicos , Genoma , Mamíferos/genética , Taxa de Mutação , Filogenia , Polimorfismo Genético , Densidade Demográfica , Proteínas/genética , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...