Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 79(10): 3959-3969, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37273195

RESUMO

BACKGROUND: Sirex noctilio is an invasive forest wasp that affects pines and can result in severe economic losses. The use of semiochemicals offers an opportunity to develop sensitive and specific capturing systems to mitigatenegative impacts. Previous research showed that female S. noctilio would use volatiles emitted by its fungal symbiont, Amylostereum areolatum, but little is known about how these modulate behaviour when combined with pine-wood emissions. Our aim was to understand the relevance of fungal volatiles grown on artificial media and wood from two hosts trees, Pinus contorta and Pinus ponderosa, on behavioural and electroantennographic responses of wasp females. Because background odours can modify an insect's response towards resource-indicating semiochemicals, we propose that the behaviour towards the symbiont (resource) will be modulated by host pine emissions (background odours). RESULTS: Olfactometric assays showed that both host species with fungus were attractive when contrasted against air (P. contorta versus Air, χ2 = 12.19, P < 0.001; P. ponderosa versus Air, χ2 = 20.60, P < 0.001) and suggest a clear hierarchy in terms of female preferences towards the tested stimuli, with response highest towards the fungus grown on P. contorta (olfactory preference index: 5.5). Electrophysiological analyses indicate that females detect 62 volatile compounds from the tested sources. CONCLUSION: Results indicate a strong synergy between symbiont and host semiochemicals, suggesting that the pine species could play a fundamental role in the interaction. Further understanding of the chemical basis of this, could guide the development of specific and attractive lures, in order to maximize attraction of wasps in surveillance programmes. © 2023 Society of Chemical Industry.


Assuntos
Pinus , Vespas , Animais , Feminino , Árvores , Oviposição , Sinais (Psicologia) , Simbiose , Vespas/fisiologia
2.
Eur J Neurosci ; 51(9): 1867-1880, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32048391

RESUMO

Sensory aversion is essential for avoiding prospective dangers. We studied the chemical perception of aversive compounds of different gustatory modalities (salty, bitter) in the haematophagous bug, Rhodnius prolixus. Over a walking arena, insects avoided a substrate embedded with 1M NaCl or KCl if provided with water as an alternative. However, no preferences were expressed when both salts were opposed to each other. A pre-exposure to amiloride interfered with the repellency of NaCl and KCl equally, suggesting that amiloride-sensitive receptors are involved in the detection of both salts. Discriminative experiments were then performed to determine whether R. prolixus can distinguish between these salts. An aversive operant conditioning involving either NaCl or KCl modulated the repellency of the conditioned salt, but also of the novel salt. Repellency levels of both salts were rigid to a chemical pre-exposure to any of both salts. When gustatory modalities were crossed by presenting as a choice NaCl and a bitter molecule as caffeine (Caf), no innate preferences were expressed. Aversive operant conditionings with either NaCl or Caf rendered unspecific changes in the repellency of both compounds. A chemical pre-exposure to Caf modulated the response to Caf but not to NaCl, suggesting the existence of two independent neural pathways for the detection of salts and bitter compounds. Overall results suggest that R. prolixus cannot discriminate molecules of the same gustatory modality (i.e. salty), but can distinguish between salty and bitter tastes. The potential use of aversive gustatory stimuli as a complement of commercially available olfactory repellents is discussed.


Assuntos
Cloreto de Sódio , Paladar , Animais , Insetos , Percepção , Estudos Prospectivos
3.
J Physiol Paris ; 110(3 Pt A): 99-106, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27865772

RESUMO

Animals make use of contact chemoreception structures to examine the quality of potential food sources. During this evaluation they can detect nutritious compounds that promote feeding and recognize toxins that trigger evasive behaviors. Although animals can easily distinguish between stimuli of different gustatory qualities (bitter, salty, sweet, etc.), their ability to discriminate between compounds of the same quality may be limited. Numerous plants produce alkaloids, compounds that elicit aversive behaviors in phytophagous insects and almost uniformly evoke a bitter taste for man. In hematophagous insects, however, the effect of feeding deterrent molecules has been barely studied. Recent studies showed that feeding in Rhodnius prolixus can be negatively modulated by the presence of alkaloids such as quinine (QUI) and caffeine (CAF), compounds that elicit similar aversive responses. Here, we applied associative and non-associative learning paradigms to examine under two behavioral contexts the ability of R. prolixus to distinguish, discriminate and/or generalize between these two bitter compounds, QUI and CAF. Our results show that bugs innately repelled by bitter compounds can change their behavior from avoidance to indifference or even to preference according to their previous experiences. After an aversive operant conditioning with QUI or CAF, R. prolixus modified its behavior in a direct but also in a cross-compound manner, suggesting the occurrence of a generalization process between these two alkaloids. Conversely, after a long pre-exposure to each alkaloid, bugs decreased their avoidance to the compound used during pre-exposure but still expressed an avoidance of the novel compound, proving that QUI and CAF are detected separately. Our results suggest that R. prolixus is able to discriminate between QUI and CAF, although after an associative conditioning they express a symmetrical cross-generalization. This kind of studies adds insight into the gustatory sense of a blood-sucking model but also into the learning abilities of hematophagous insects.


Assuntos
Aprendizagem/fisiologia , Rhodnius/fisiologia , Animais , Aprendizagem da Esquiva/fisiologia , Comportamento Animal/fisiologia , Cafeína , Condicionamento Psicológico , Quinina , Paladar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...