Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 23(47): 475707, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23110801

RESUMO

The effect of silicon concentration and annealing temperature on terbium luminescence was investigated for thin silicon rich silicon oxide films. The structures were deposited by means of plasma enhanced chemical vapor deposition. The structural properties of these films were investigated by Rutherford backscattering spectrometry, transmission electron microscopy and Raman scattering. The optical properties were investigated by means of photoluminescence and photoluminescence decay spectroscopy. It was found that both the silicon concentration in the film and the annealing temperature have a strong impact on the terbium emission intensity. In this paper, we present a detailed discussion of these issues and determine the optimal silicon concentration and annealing temperature.

2.
J Phys Condens Matter ; 23(50): 505302, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22129528

RESUMO

Synchrotron x-ray absorption spectroscopy (XAS) and electron spin resonance (ESR) experiments were performed to determine, in combination with Raman spectroscopy and x-ray diffraction (XRD) data from previous reports, the structure and paramagnetic defect status of Si-nanoclusters (ncls) at various intermediate formation stages in Si-rich Si oxide films having different Si concentrations (y = 0.36-0.42 in Si(y)O(1-y)), fabricated by electron cyclotron resonance plasma-enhanced chemical vapor deposition and isochronally (2 h) annealed at various temperatures (T(a) = 900-1100 °C) under either Ar or (Ar + 5%H(2)) atmospheres. The corresponding emission properties were studied by stationary and time dependent photoluminescence (PL) spectroscopy in correlation with the structural and defect properties. To explain the experimental data, we propose crystallization by nucleation within already existing amorphous Si-ncls as the mechanism for the formation of the Si nanocrystals in the oxide matrix. The cluster-size dependent partial crystallization of Si-ncls at intermediate T(a) can be qualitatively understood in terms of a 'crystalline core-amorphous shell' Si-ncl model. The amorphous shell, which is invisible in most diffraction and electron microscopy experiments, is found to have an important impact on light emission. As the crystalline core grows at the expense of a thinning amorphous shell with increasing T(a), the PL undergoes a transition from a regime dominated by disorder-induced effects to a situation where quantum confinement of excitons prevails.


Assuntos
Elétrons , Nanoestruturas/química , Silício/química , Gases/química , Fenômenos Magnéticos , Fenômenos Ópticos , Óxidos/química , Análise Espectral , Temperatura , Volatilização
3.
Nanotechnology ; 19(18): 185601, 2008 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-21825689

RESUMO

Previously we have described the deposition of vertically aligned wurtzite CdTe nanowires derived from an unusual catalytically driven growth mode. This growth mode could only proceed when the surface of the substrate was corrupted with an alcohol layer, although the role of the corruption was not fully understood. Here, we present a study detailing the remarkable role that this substrate surface alteration plays in the development of CdTe nanowires; it dramatically improves the size uniformity and largely eliminates lateral growth. These effects are demonstrated to arise from the altered surface's ability to limit Ostwald ripening of the catalytic seed material and by providing a surface unable to promote the epitaxial relationship needed to sustain a lateral growth mode. The axial growth of the CdTe nanowires is found to be exclusively driven through the direct impingement of adatoms onto the catalytic seeds leading to a self-limiting wire height associated with the sublimation of material from the sidewall facets. The work presented furthers the development of the mechanisms needed to promote high quality substrate-based vertically aligned CdTe nanowires. With our present understanding of the growth mechanism being a combination of selective area epitaxy and a catalytically driven vapour-liquid-solid growth mode, these results also raise the intriguing possibility of employing this growth mode in other material systems in an effort to produce superior nanowires.

4.
Opt Express ; 15(22): 14679-88, 2007 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-19550749

RESUMO

We describe the integration of optically pumped silicon nanocrystals (Si-ncs) embedded in SiO(2) with low loss silicon nitride slab waveguides. An emission waveguide containing Si-ncs with a broad band emission centered at 850 nm, together with a low loss transmission silicon nitride waveguide forms a two section device. The waveguides are fabricated via the deposition of SiO(x) and silicon nitride using ECR-PECVD. Incorporation of hydrogen through annealing, while beneficial to emission from the Si-ncs, is found to increase material absorption in silicon nitride. This is reconciled by annealing at low temperature. This work shows clearly the potential for this material system as a means for the integration of optical emission and waveguiding using a wholly VLSI compatible processing technology. We further suggest that immediate applications exist in particular in the field of evanescent sensing.

5.
Appl Opt ; 39(6): 1053-8, 2000 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-18337985

RESUMO

Thin-film interference filters, suitable for use on GaAs- and InP-based lasers, have been fabricated by use of the electron-cyclotron resonance plasma-enhanced chemical vapor deposition technique. Multilayer film structures composed of silicon oxynitride material have been deposited at low temperatures with an in situ rotating compensator ellipsometer for monitoring the index of refraction and thickness of the deposited layers. Individual layers with an index of refraction from 3.3 to 1.46 at 633 nm have been produced with a run-to-run reproducibility of 0.005 and a thickness control of 10 A. Several filter designs have been implemented, including high-reflection filters, one- and two-layer anitreflection filters, and narrow-band high-reflection filters. It is shown that an accurate measurement of the filter optical properties during deposition is possible and that controlled reflectance spectra can be obtained.

10.
Phys Rev Lett ; 56(20): 2195-2198, 1986 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-10032915
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...