Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 36(7): 3452-3463, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617804

RESUMO

This work challenges the conventional approach of using NdIII 4F3/2 lifetime changes for evaluating the experimental NdIII → YbIII energy transfer rate and efficiency. Using near-infrared (NIR) emitting Nd:Yb mixed-metal coordination polymers (CPs), synthesized via solvent-free thermal grinding, we demonstrate that the NdIII [2H11/2 → 4I15/2] → YbIII [2F7/2 → 2F5/2] pathway, previously overlooked, dominates energy transfer due to superior energy resonance and J-level selection rule compatibility. This finding upends the conventional focus on the NdIII [4F3/2 → 4I11/2] → YbIII [2F7/2 → 2F5/2] transition pathway. We characterized Nd0.890Yb0.110(BTC)(H2O)6 as a promising cryogenic NIR thermometry system and employed our novel energy transfer understanding to perform simulations, yielding theoretical thermometric parameters and sensitivities for diverse Nd:Yb ratios. Strikingly, experimental thermometric data closely matched the theoretical predictions, validating our revised model. This novel perspective on NdIII → YbIII energy transfer holds general applicability for the NdIII/YbIII pair, unveiling an important spectroscopic feature with broad implications for energy transfer-driven materials design.

2.
ACS Nano ; 18(11): 8423-8436, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38446635

RESUMO

Nanocrystal superlattices (NC SLs) have long been sought as promising metamaterials, with nanoscale-engineered properties arising from collective and synergistic effects among the constituent building blocks. Lead halide perovskite (LHP) NCs come across as outstanding candidates for SL design, as they demonstrate collective light emission, known as superfluorescence, in single- and multicomponent SLs. Thus far, LHP NCs have only been assembled in single-component SLs or coassembled with dielectric NC building blocks acting solely as spacers between luminescent NCs. Here, we report the formation of multicomponent LHP NC-only SLs, i.e., using only CsPbBr3 NCs of different sizes as building blocks. The structural diversity of the obtained SLs encompasses the ABO6, ABO3, and NaCl structure types, all of which contain orientationally and positionally locked NCs. For the selected model system, the ABO6-type SL, we observed efficient NC coupling and Förster-like energy transfer from strongly confined 5.3 nm CsPbBr3 NCs to weakly confined 17.6 nm CsPbBr3 NCs, along with characteristic superfluorescence features at cryogenic temperatures. Spatiotemporal exciton dynamics measurements reveal that binary SLs exhibit enhanced exciton diffusivity compared to single-component NC assemblies across the entire temperature range (from 5 to 298 K). The observed coherent and incoherent NC coupling and controllable excitonic transport within the solid NC SLs hold promise for applications in quantum optoelectronic devices.

3.
ACS Nano ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320982

RESUMO

The compositional engineering of lead-halide perovskite nanocrystals (NCs) via the A-site cation represents a lever to fine-tune their structural and electronic properties. However, the presently available chemical space remains minimal since, thus far, only three A-site cations have been reported to favor the formation of stable lead-halide perovskite NCs, i.e., Cs+, formamidinium (FA), and methylammonium (MA). Inspired by recent reports on bulk single crystals with aziridinium (AZ) as the A-site cation, we present a facile colloidal synthesis of AZPbBr3 NCs with a narrow size distribution and size tunability down to 4 nm, producing quantum dots (QDs) in the regime of strong quantum confinement. NMR and Raman spectroscopies confirm the stabilization of the AZ cations in the locally distorted cubic structure. AZPbBr3 QDs exhibit bright photoluminescence with quantum efficiencies of up to 80%. Stabilized with cationic and zwitterionic capping ligands, single AZPbBr3 QDs exhibit stable single-photon emission, which is another essential attribute of QDs. In particular, didodecyldimethylammonium bromide and 2-octyldodecyl-phosphoethanolamine ligands afford AZPbBr3 QDs with high spectral stability at both room and cryogenic temperatures, reduced blinking with a characteristic ON fraction larger than 85%, and high single-photon purity (g(2)(0) = 0.1), all comparable to the best-reported values for MAPbBr3 and FAPbBr3 QDs of the same size.

4.
Nat Phys ; 20(1): 47-53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38261834

RESUMO

Understanding the origin of electron-phonon coupling in lead halide perovskites is key to interpreting and leveraging their optical and electronic properties. Here we show that photoexcitation drives a reduction of the lead-halide-lead bond angles, a result of deformation potential coupling to low-energy optical phonons. We accomplish this by performing femtosecond-resolved, optical-pump-electron-diffraction-probe measurements to quantify the lattice reorganization occurring as a result of photoexcitation in nanocrystals of FAPbBr3. Our results indicate a stronger coupling in FAPbBr3 than CsPbBr3. We attribute the enhanced coupling in FAPbBr3 to its disordered crystal structure, which persists down to cryogenic temperatures. We find the reorganizations induced by each exciton in a multi-excitonic state constructively interfere, giving rise to a coupling strength that scales quadratically with the exciton number. This superlinear scaling induces phonon-mediated attractive interactions between excitations in lead halide perovskites.

5.
ACS Omega ; 8(46): 43651-43663, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38027374

RESUMO

Naphthalene tetracarboxylic diimides (NDIs), possessing low-lying and tunable LUMO levels, are of wide interest for their aptitude to provide cost-effective, flexible, and environmentally stable n-type organic semiconductors through simple solution processing. NDI-based aromatic hydrazidimides are herein studied in relation to their chemical and environmental stability and as spin-coated stable thin films. In the case of the pentafluorinated residue, these were found to be crystalline, highly oriented, and molecularly flat (roughness = 0.3 nm), based on optical and atomic force microscopy, X-ray diffraction in specular and grazing incidence geometry, and X-ray reflectivity measurements. A new polymorph, previously undetected during the isolation of bulk powders or in their controlled thermal treatments, is found in the thin film and was metrically and structurally characterized from 2D GIWAXS patterns (monoclinic, P2/c, a = 17.50; b = 4.56; c = 14.24 Å; ß = 84.8°). This new thin-film phase, TF-F5, is formed no matter whether silicon, glass, or polymethylmethacrylate substrates are used, thus opening the way to the preparation of solution-grown flexible semiconducting films. The TF-F5 films exhibit a systematic and rigorous molecular alignment with both orientation and packing favorable to electron mobility (µ = 0.02 cm2 V-1 s-1). Structural and morphological differences are deemed responsible for the absence of measurable conductivity in thin films of polyfluorinated analogues bearing -CF3 residues on the hydrazidimide aromatic rings.

6.
Acta Crystallogr A Found Adv ; 79(Pt 6): 587-596, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916738

RESUMO

The Debye scattering equation (DSE) [Debye (1915). Ann. Phys. 351, 809-823] is widely used for analyzing total scattering data of nanocrystalline materials in reciprocal space. In its modified form (MDSE) [Cervellino et al. (2010). J. Appl. Cryst. 43, 1543-1547], it includes contributions from uncorrelated thermal agitation terms and, for defective crystalline nanoparticles (NPs), average site-occupancy factors (s.o.f.'s). The s.o.f.'s were introduced heuristically and no theoretical demonstration was provided. This paper presents in detail such a demonstration, corrects a glitch present in the original MDSE, and discusses the s.o.f.'s physical significance. Three new MDSE expressions are given that refer to distinct defective NP ensembles characterized by: (i) vacant sites with uncorrelated constant site-occupancy probability; (ii) vacant sites with a fixed number of randomly distributed atoms; (iii) self-excluding (disordered) positional sites. For all these cases, beneficial aspects and shortcomings of introducing s.o.f.'s as free refinable parameters are demonstrated. The theoretical analysis is supported by numerical simulations performed by comparing the corrected MDSE profiles and the ones based on atomistic modeling of a large number of NPs, satisfying the structural conditions described in (i)-(iii).

7.
Molecules ; 28(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37764229

RESUMO

Two-dimensional layered coordination polymers based on the hetero-substituted 3-chloro-6-cyano-2,5-dihydroxybenzoquinone ligands, hereafter ClCNAn2- anilate, and LnIII ions (Tb and Eu) are reported. Compounds 1 and 2, formulated as Ln2(ClCNAn)3(DMSO)6 (LnIII = Tb, 1; Eu, 2), and their related intermediates 1' and 2', formulated as Ln2(ClCNAn)3(H2O)x·yH2O (x + y likely = 12, Ln = Tb, 1'; and Eu, 2'), were prepared by a conventional one-pot reaction (the latter) and recrystallized from DMSO solvent (the former). Polyhydrated intermediates 1' and 2' show very similar XRPD patterns, while, despite their common stoichiometry, 1 and 2 are not isostructural. Compound 1 consists of a 2D coordination framework of 3,6 topology, where [Tb(DMSO)3]III moieties are bridged by three bis-chelating ClCNAn2- ligands, forming distorted hexagons. Ultrathin nanosheets of 1 were obtained by exfoliation via the liquid-assisted sonication method and characterized by atomic force microscopy, confirming the 2D nature of 1. The crystal structure of 2, still showing the presence of 2D sheets with a "hexagonal" mesh and a common (3,6) connectivity, is based onto flat, non-corrugated slabs. Indeed, at a larger scale, the different "rectangular tiles" show clear roofing in 1, which is totally absent in 2. The magnetic behavior of 1 very likely indicates depopulation of the highest crystal-field levels, as expected for TbIII compounds.

8.
Angew Chem Int Ed Engl ; 62(45): e202310445, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37743252

RESUMO

Perylene diimides (PDI) are workhorses in the field of organic electronics, owing to their appealing n-semiconducting properties. Optimization of their performances is widely pursued by bay-atom substitution and diverse imide functionalization. Bulk solids and thin-films of these species crystallize in a variety of stacking configurations, depending on the geometry of the stable conformation of the polyaromatic core. We here demonstrate that 1,7-dibromo-substituted perylene diimides, PDI(H2 Br2 ), possessing a heavily twisted conformation in the gas phase, in solution and in the solids, can be easily flattened in the solid state into centrosymmetric molecules if the polyaromatic cores form π-π stabilized chains. This is achieved by using axial residues with low stereochemical hindrance, as guaranteed by a single CH2 /NH spacer directly linked to the imide function. Structural powder diffraction and DFT calculations on four newly designed species of the PDI(H2 Br2 ) class coherently show that, thanks to the flexibility of the N-X-Ar link (X=CH2 /NH), flat cores are indeed obtained by overcoming the interconversion barrier between twisted atropoisomers, of only 26.5 kJ mol-1 . This strategy may then be useful to induce "anomalously flat" polyaromatic cores of different kinds (substituted acenes/rylenes) in the solid state, towards suitable crystal packing and orbital interactions for improved electronic performances.

9.
ACS Appl Nano Mater ; 6(14): 12914-12921, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37533540

RESUMO

Magnetic iron oxide nanoparticles (IONPs) have gained momentum in the field of biomedical applications. They can be remotely heated via alternating magnetic fields, and such heat can be transferred from the IONPs to the local environment. However, the microscopic mechanism of heat transfer is still debated. By X-ray total scattering experiments and first-principles simulations, we show how such heat transfer can occur. After establishing structural and microstructural properties of the maghemite phase of the IONPs, we built a maghemite model functionalized with aminoalkoxysilane, a molecule used to anchor (bio)molecules to oxide surfaces. By a linear response theory approach, we reveal that a resonance mechanism is responsible for the heat transfer from the IONPs to the surroundings. Heat transfer occurs not only via covalent linkages with the IONP but also through the solvent hydrogen-bond network. This result may pave the way to exploit the directional control of the heat flow from the IONPs to the anchored molecules-i.e., antibiotics, therapeutics, and enzymes-for their activation or release in a broader range of medical and industrial applications.

10.
Nano Lett ; 23(5): 1914-1923, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36852730

RESUMO

The long search for nontoxic alternatives to lead halide perovskites (LHPs) has shown that some compelling properties of LHPs, such as low effective masses of carriers, can only be attained in their closest Sn(II) and Ge(II) analogues, despite their tendency toward oxidation. Judicious choice of chemistry allowed formamidinium tin iodide (FASnI3) to reach a power conversion efficiency of 14.81% in photovoltaic devices. This progress motivated us to develop a synthesis of colloidal FASnI3 NCs with a concentration of Sn(IV) reduced to an insignificant level and to probe their intrinsic structural and optical properties. Intrinsic FASnI3 NCs exhibit unusually low absorption coefficients of 4 × 103 cm-1 at the first excitonic transition, a 190 meV increase of the band gap as compared to the bulk material, and a lack of excitonic resonances. These features are attributed to a highly disordered lattice, distinct from the bulk FASnI3 as supported by structural characterizations and first-principles calculations.

11.
ACS Nano ; 17(3): 2089-2100, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36719353

RESUMO

The success of the colloidal semiconductor quantum dots (QDs) field is rooted in the precise synthetic control of QD size, shape, and composition, enabling electronically well-defined functional nanomaterials that foster fundamental science and motivate diverse fields of applications. While the exploitation of the strong confinement regime has been driving commercial and scientific interest in InP or CdSe QDs, such a regime has still not been thoroughly explored and exploited for lead-halide perovskite QDs, mainly due to a so far insufficient chemical stability and size monodispersity of perovskite QDs smaller than about 7 nm. Here, we demonstrate chemically stable strongly confined 5 nm CsPbBr3 colloidal QDs via a postsynthetic treatment employing didodecyldimethylammonium bromide ligands. The achieved high size monodispersity (7.5% ± 2.0%) and shape-uniformity enables the self-assembly of QD superlattices with exceptional long-range order, uniform thickness, an unusual rhombic packing with an obtuse angle of 104°, and narrow-band cyan emission. The enhanced chemical stability indicates the promise of strongly confined perovskite QDs for solution-processed single-photon sources, with single QDs showcasing a high single-photon purity of 73% and minimal blinking (78% "on" fraction), both at room temperature.

12.
Chemistry ; 29(14): e202203441, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36477929

RESUMO

Naphthalene tetracarboxylic diimides (NDIs) are highly promising air-stable n-type molecular semiconductor candidates for flexible and cost-effective organic solar cells and thermoelectrics. Nonetheless, thermal and polymorphic stabilities of environmentally stable NDIs in the low-to-medium temperature regime (<300 °C) remain challenging properties. Structural, thermal, spectroscopic, and computational features of polyfluorinated NDI-based molecular solids (with up to 14 F atoms per NDI molecule) are discussed upon increasing the fluorination level. Slip-stacked arrangement of the NDI cores with suitable π-π stacking and systematically short interplanar distances (<3.2 Å) are found. All these materials exhibit superior thermal stability (up to 260 °C or above) and thermal expansion coefficients indicating a response compatible with flexible polymeric substrates. Optical bandgaps increase from 2.78 to 2.93 eV with fluorination, while LUMO energy levels decrease down to -4.37 eV, as shown per DFT calculations. The compounds exhibit excellent solubility of 30 mg mL-1 in 1,4-dioxane and DMF.

13.
Materials (Basel) ; 15(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36499793

RESUMO

Layered TiS2 intercalated with linear alkylamines has recently attracted significant interest as a model compound for flexible n-type thermoelectric applications, showing remarkably high power factors at room temperature. The thermal and, particularly, environmental stability of such materials is, however, a still an open challenge. In this paper, we show that amine-intercalated TiS2 prepared by a simple mechanochemical process is prone to chemical decomposition through sulfur exsolution, and that the presence of molecular oxygen is likely to mediate the decomposition reaction. Through computational analysis of the possible reaction pathways, we propose that Ti-N adducts are formed as a consequence of amine groups substituting for S vacancies on the internal surfaces of the S-Ti-S layers. These findings provide insights for possible future applications of similar hybrid compounds as devices operating in ambient conditions, and suggest isolating them from atmospheric oxygen.

14.
Molecules ; 27(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364244

RESUMO

Tafamidis, chemical formula C14H7Cl2NO3, is a drug used to delay disease progression in adults suffering from transthyretin amyloidosis, and is marketed worldwide under different tradenames as a free acid or in the form of its meglumine salt. The free acid (CAS no. 594839-88-0) is reported to crystallize as distinct (polymorphic) crystal forms, the thermal stability and structural features of which remained thus far undisclosed. In this paper, we present-by selectively isolating highly pure batches of Tafamidis Form 1 and Tafamidis Form 4-the full characterization of these solids, in terms of crystal structures (determined using state-of-the-art structural powder diffraction methods) and spectroscopic and thermal properties. Beyond conventional thermogravimetric and calorimetric analyses, variable-temperature X-ray diffraction was employed to measure the highly anisotropic response of these (poly)crystalline materials to thermal stimuli and enabled the determination of the linear and volumetric thermal expansion coefficients and of the related indicatrix. Both crystal phases are monoclinic and contain substantially flat and π-π stacked Tafamidis molecules, arranged as centrosymmetric dimers by strong O-H···O bonds; weaker C-H···N contacts give rise, in both polymorphs, to infinite ribbons, which guarantee the substantial stiffness of the crystals in the direction of their elongation. Complete knowledge of the structural models will foster the usage of full-pattern quantitative phase analyses of Tafamidis in drug and polymorphic mixtures, an important aspect in both the forensic and the industrial sectors.


Assuntos
Cristalização , Cristalização/métodos , Difração de Pó , Difração de Raios X
15.
Nanomaterials (Basel) ; 12(15)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35957141

RESUMO

The need for qualitatively and quantitatively enhanced food production, necessary for feeding a progressively increasing World population, requires the adoption of new and sustainable agricultural protocols. Among them, limiting the waste of fertilizers in the environment has become a global target. Nanotechnology can offer the possibility of designing and preparing novel materials alternative to conventional fertilizers, which are more readily absorbed by plant roots and, therefore, enhance nutrient use efficiency. In this context, during the last decade, great attention has been paid to calcium phosphate nanoparticles (CaP), particularly nanocrystalline apatite and amorphous calcium phosphate, as potential macronutrient nano-fertilizers with superior nutrient-use efficiency to their conventional counterparts. Their inherent content in macronutrients, like phosphorus, and gradual solubility in water have been exploited for their use as slow P-nano-fertilizers. Likewise, their large (specific) surfaces, due to their nanometric size, have been functionalized with additional macronutrient-containing species, like urea or nitrate, to generate N-nano-fertilizers with more advantageous nitrogen-releasing profiles. In this regard, several studies report encouraging results on the superior nutrient use efficiency showed by CaP nano-fertilizers in several crops than their conventional counterparts. Based on this, the advances of this topic are reviewed here and critically discussed, with special emphasis on the preparation and characterization approaches employed to synthesize/functionalize the engineered nanoparticles, as well as on their fertilization properties in different crops and in different (soil, foliar, fertigation and hydroponic) conditions. In addition, the remaining challenges in progress toward the real application of CaP as nano-fertilizers, involving several fields (i.e., agronomic or material science sectors), are identified and discussed.

16.
Nanomaterials (Basel) ; 12(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35808049

RESUMO

Light scattering and turbidimetry techniques are classical tools for characterizing the dynamics and structure of single nanoparticles or nanostructured networks. They work by analyzing, as a function of time (Dynamic Light Scattering, DLS) or angles (Static Light Scattering, SLS), the light scattered by a sample, or measuring, as a function of the wavelength, the intensity scattered over the entire solid angle when the sample is illuminated with white light (Multi Wavelength Turbidimetry, MWT). Light scattering methods probe different length scales, in the ranges of ~5−500 nm (DLS), or ~0.1−5 µm (Wide Angle SLS), or ~1−100 µm (Low Angle SLS), and some of them can be operated in a time-resolved mode, with the possibility of characterizing not only stationary, but also aggregating, polymerizing, or self-assembling samples. Thus, the combined use of these techniques represents a powerful approach for studying systems characterized by very different length scales. In this work, we will review some typical applications of these methods, ranging from the field of colloidal fractal aggregation to the polymerization of biologic networks made of randomly entangled nanosized fibers. We will also discuss the opportunity of combining together different scattering techniques, emphasizing the advantages of a global analysis with respect to single-methods data processing.

17.
Nanotechnology ; 33(42)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35820371

RESUMO

The structures of the disordered 1D (pseudo-)perovskites of general TMSO(PbxBiy)I3formulation [TMSO = (CH3)3SO+], obtained by doping the TMSOPbI3species with Bi3+ions, are investigated through the formulation of a statistical model of correlated disorder, which addresses the sequences of differently occupied BI6face-sharing octahedra (B = Pb, Bi or vacant site) within ideally infinite [(BI3)-]nchains. The x-ray diffraction patterns simulated on the basis of the model are matched to the experimental traces, which show many broad peaks with awkward (nearly trapezoidal) shapes, under the assumption that the charge balance is fully accomplished within each chain. The analysis allowed to establish a definite tendency of the metal species to cluster as pure Pb and Bi sequences. The application of the model is discussed critically, in particular as what concerns the possibility that further B-site neighbors beyond the second may influence the overall B-site occupancies.

18.
Nanomaterials (Basel) ; 12(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35457960

RESUMO

Atomic- and nanometer-scale features of nanomaterials have a strong influence on their chemical and physical properties and a detailed description of these elements is a crucial step in their characterization. Total scattering methods, in real and reciprocal spaces, have been established as fundamental techniques to retrieve this information. Although the impact of microstructural features, such as defectiveness of different kinds, has been extensively studied in reciprocal space, disentangling these effects from size- and morphology-induced properties, upon downsizing, is not a trivial task. Additionally, once the experimental pattern is Fourier transformed to calculate the pair distribution function, the direct fingerprint of structural and microstructural features is severely lost and no modification of the histogram of interatomic distances derived therefrom is clearly discussed nor considered in the currently available protocols. Hereby, starting from atomistic models of a prototypical system (cadmium selenide), we simulate multiple effects on the atomic pair distribution function, obtained from reciprocal space patterns computed through the Debye scattering equation. Size and size dispersion effects, as well as different structures, morphologies, and their interplay with several kinds of planar defects, are explored, aiming at identifying the main (measurable and informative) fingerprints of these features on the total scattering pattern in real and reciprocal spaces, highlighting how, and how much, they become evident when comparing different cases. The results shown herein have general validity and, as such, can be further extended to other classes of nanomaterials.

19.
Front Plant Sci ; 12: 745581, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950161

RESUMO

At present, the quest for innovative and sustainable fertilization approaches aiming to improve agricultural productivity represents one of the major challenges for research. In this context, nanoparticle-based fertilizers can indeed offer an interesting alternative with respect to traditional bulk fertilizers. Several pieces of evidence have already addressed the effectiveness of amorphous calcium phosphate-based nanoparticles as carriers for macronutrients, such as nitrogen (N), demonstrating increase in crop productivity and improvement in quality. Nevertheless, despite N being a fundamental nutrient for crop growth and productivity, very little research has been carried out to understand the physiological and molecular mechanisms underpinning N-based fertilizers supplied to plants via nanocarriers. For these reasons, this study aimed to investigate the responses of Cucumis sativus L. to amorphous calcium phosphate nanoparticles doped with urea (U-ACP). Urea uptake dynamics at root level have been investigated by monitoring both the urea acquisition rates and the modulation of urea transporter CsDUR3, whereas growth parameters, the accumulation of N in both root and shoots, and the general ionomic profile of both tissues have been determined to assess the potentiality of U-ACP as innovative fertilizers. The slow release of urea from nanoparticles and/or their chemical composition contributed to the upregulation of the urea uptake system for a longer period (up to 24 h after treatment) as compared to plants treated with bulk urea. This prolonged activation was mirrored by a higher accumulation of N in nanoparticle-treated plants (approximately threefold increase in the shoot of NP-treated plants compared to controls), even when the concentration of urea conveyed through nanoparticles was halved. In addition, besides impacting N nutrition, U-ACP also enhanced Ca and P concentration in cucumber tissues, thus having possible effects on plant growth and yield, and on the nutritional value of agricultural products.

20.
Nanomaterials (Basel) ; 11(10)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34685211

RESUMO

In this study, the structure and morphology, as well as time, ultraviolet radiation, and humidity stability of thin films based on newly developed 1D (PRSH)PbX3 (X = Br, I) pseudo-perovskite materials, containing 1D chains of face-sharing haloplumbate octahedra, are investigated. All films are strongly crystalline already at room temperature, and annealing does not promote further crystallization or film reorganization. The film microstructure is found to be strongly influenced by the anion type and, to a lesser extent, by the DMF/DMSO solvent volume ratio used during film deposition by spin-coating. Comparison of specular X-ray diffraction and complementary grazing incidence X-ray diffraction analysis indicates that the use of DMF/DMSO mixed solvents promotes the strengthening of a dominant 100 or 210 texturing, as compared the case of pure DMF, and that the haloplumbate chains always lie in a plane parallel to the substrate. Under specific DMF/DMSO solvent volume ratios, the prepared films are found to be highly stable in time (up to seven months under fluxing N2 and in the dark) and to highly moist conditions (up to 25 days at 78% relative humidity). Furthermore, for representative (PRSH)PbX3 films, resistance against ultraviolet exposure (λ = 380 nm) is investigated, showing complete stability after irradiation for up to 15 h at a power density of 600 mW/cm2. These results make such thin films interesting for highly stable perovskite-based (opto)electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...