Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 25(5): 883-96, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20868739

RESUMO

Injury, infection and autoimmune triggers increase CNS expression of the chemokine CCL21. Outside the CNS, CCL21 contributes to chronic inflammatory disease and autoimmunity by three mechanisms: recruitment of lymphocytes into injured or infected tissues, organization of inflammatory infiltrates into lymphoid-like structures and promotion of homeostatic CD4+ T-cell proliferation. To test if CCL21 plays the same role in CNS inflammation, we generated transgenic mice with astrocyte-driven expression of CCL21 (GFAP-CCL21 mice). Astrocyte-produced CCL21 was bioavailable and sufficient to support homeostatic CD4+ T-cell proliferation in cervical lymph nodes even in the absence of endogenous CCL19/CCL21. However, lymphocytes and glial-activation were not detected in the brains of uninfected GFAP-CCL21 mice, although CCL21 levels in GFAP-CCL21 brains were higher than levels expressed in inflamed Toxoplasma-infected non-transgenic brains. Following Toxoplasma infection, T-cell extravasation into submeningeal, perivascular and ventricular sites of infected CNS was not CCL21-dependent, occurring even in CCL19/CCL21-deficient mice. However, migration of extravasated CD4+, but not CD8+ T cells from extra-parenchymal CNS sites into the CNS parenchyma was CCL21-dependent. CD4+ T cells preferentially accumulated at perivascular, submeningeal and ventricular spaces in infected CCL21/CCL19-deficient mice. By contrast, greater numbers of CD4+ T cells infiltrated the parenchyma of infected GFAP-CCL21 mice than in wild-type or CCL19/CCL21-deficient mice. Together these data indicate that CCL21 expression within the CNS has the potential to contribute to T cell-mediated CNS pathology via: (a) homeostatic priming of CD4+ T-lymphocytes outside the CNS and (b) by facilitating CD4+ T-cell migration into parenchymal sites following pathogenic insults to the CNS.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Quimiocina CCL21/fisiologia , Toxoplasma/imunologia , Toxoplasmose Cerebral/imunologia , Animais , Astrócitos/imunologia , Astrócitos/parasitologia , Northern Blotting , Encéfalo/imunologia , Encéfalo/parasitologia , Linfócitos T CD4-Positivos/fisiologia , Quimiotaxia de Leucócito/imunologia , Quimiotaxia de Leucócito/fisiologia , Hibridização In Situ , Ativação Linfocitária/imunologia , Ativação Linfocitária/fisiologia , Camundongos , Camundongos Transgênicos , Microglia/imunologia , Microglia/parasitologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
J Neurochem ; 109 Suppl 1: 117-25, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19393017

RESUMO

Two different macrophage populations contribute to CNS neuroinflammation: CNS-resident microglia and CNS-infiltrating peripheral macrophages. Markers distinguishing these two populations in tissue sections have not been identified. Therefore, we compared gene expression between LPS (lipopolysaccharide)/interferon (IFN)gamma-treated microglia from neonatal mixed glial cultures and similarly treated peritoneal macrophages. Fifteen molecules were identified by quantative PCR (qPCR) as being enriched from 2-fold to 250-fold in cultured neonatal microglia when compared with peritoneal macrophages. Only three of these molecules (C1qA, Trem2, and CXCL14) were found by qPCR to be also enriched in adult microglia isolated from LPS/IFNgamma-injected CNS when compared with infiltrating peripheral macrophages from the same CNS. The discrepancy between the in vitro and in vivo qPCR data sets was primarily because of induced expression of the 'microglial' molecules (such as the tolerance associated transcript, Tmem176b) in CNS-infiltrating macrophages. Bioinformatic analysis of the approximately 19000 mRNAs detected by TOGA gene profiling confirmed that LPS/IFNgamma-activated microglia isolated from adult CNS displayed greater similarity in total gene expression to CNS-infiltrating macrophages than to microglia isolated from unmanipulated healthy adult CNS. In situ hybridization analysis revealed that nearly all microglia expressed high levels of C1qA, while subsets of microglia expressed Trem2 and CXCL14. Expression of C1qA and Trem2 was limited to microglia, while large numbers of GABA+ neurons expressed CXCL14. These data suggest that (i) CNS-resident microglia are heterogeneous and thus a universal microglia-specific marker may not exist; (ii) the CNS micro-environment plays significant roles in determining the phenotypes of both CNS-resident microglia and CNS-infiltrating macrophages; (iii) the CNS microenvironment may contribute to immune privilege by inducing macrophage expression of anti-inflammatory molecules.


Assuntos
Expressão Gênica/efeitos dos fármacos , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Microglia/metabolismo , Animais , Northern Blotting , Células Cultivadas , Biologia Computacional , Células Dendríticas/metabolismo , Perfilação da Expressão Gênica , Hibridização In Situ , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Modelos Neurológicos , RNA/biossíntese , RNA/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...