Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(10)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36298728

RESUMO

Horses and humans share a close relationship that includes both species' viromes. Many emerging infectious diseases can be transmitted between horses and humans and can exhibit mortality rates as high as 90% in both populations. Antibody biologics represents an emerging field of rapidly discoverable and potent antiviral therapeutics. These biologics can be used to provide passive immunity, as well as blueprints for the rational design of novel active vaccine antigens. Here, we exploit the limited diversity of immunoglobulin variable genes used by horses to develop a rapid, high-throughput monoclonal antibody discovery pipeline. The antibodies isolated from two horses in this study were developed with near exclusivity from a few highly related germline genes within a single IgHV and IgλV gene family and could be recovered for cloning with just three primer pairs. This variable gene pairing was compatible with both horse and human immunoglobulin G isotypes, confirming the suitability of an equine antibody discovery pipeline for developing novel therapeutics to meet the One Health approach to infectious diseases.


Assuntos
Produtos Biológicos , Vacinas , Cavalos , Animais , Humanos , Anticorpos Monoclonais , Imunoglobulina G , Antivirais
2.
PLoS Pathog ; 18(4): e1010465, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35482816

RESUMO

Although efficacious vaccines have significantly reduced the morbidity and mortality of COVID-19, there remains an unmet medical need for treatment options, which monoclonal antibodies (mAbs) can potentially fill. This unmet need is exacerbated by the emergence and spread of SARS-CoV-2 variants of concern (VOCs) that have shown some resistance to vaccine responses. Here we report the isolation of five neutralizing mAbs from an Indian convalescent donor, out of which two (THSC20.HVTR04 and THSC20.HVTR26) showed potent neutralization of SARS-CoV-2 VOCs at picomolar concentrations, including the Delta variant (B.1.617.2). One of these (THSC20.HVTR26) also retained activity against the Omicron variant. These two mAbs target non-overlapping epitopes on the receptor-binding domain (RBD) of the spike protein and prevent virus attachment to its host receptor, human angiotensin converting enzyme-2 (hACE2). Furthermore, the mAb cocktail demonstrated protection against the Delta variant at low antibody doses when passively administered in the K18 hACE2 transgenic mice model, highlighting their potential as a cocktail for prophylactic and therapeutic applications. Developing the capacity to rapidly discover and develop mAbs effective against highly transmissible pathogens like coronaviruses at a local level, especially in a low- and middle-income country (LMIC) such as India, will enable prompt responses to future pandemics as an important component of global pandemic preparedness.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Camundongos , Glicoproteína da Espícula de Coronavírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...