Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Hum Neurosci ; 16: 861270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693537

RESUMO

Neuromarketing relies on Brain Computer Interface (BCI) technology to gain insight into how customers react to marketing stimuli. Marketers spend about $750 billion annually on traditional marketing camping. They use traditional marketing research procedures such as Personal Depth Interviews, Surveys, Focused Group Discussions, and so on, which are frequently criticized for failing to extract true consumer preferences. On the other hand, Neuromarketing promises to overcome such constraints. This work proposes a machine learning framework for predicting consumers' purchase intention (PI) and affective attitude (AA) from analyzing EEG signals. In this work, EEG signals are collected from 20 healthy participants while administering three advertising stimuli settings: product, endorsement, and promotion. After preprocessing, features are extracted in three domains (time, frequency, and time-frequency). Then, after selecting features using wrapper-based methods Recursive Feature Elimination, Support Vector Machine is used for categorizing positive and negative (AA and PI). The experimental results show that proposed framework achieves an accuracy of 84 and 87.00% for PI and AA ensuring the simulation of real-life results. In addition, AA and PI signals show N200 and N400 components when people tend to take decision after visualizing static advertisement. Moreover, negative AA signals shows more dispersion than positive AA signals. Furthermore, this work paves the way for implementing such a neuromarketing framework using consumer-grade EEG devices in a real-life setting. Therefore, it is evident that BCI-based neuromarketing technology can help brands and businesses effectively predict future consumer preferences. Hence, EEG-based neuromarketing technologies can assist brands and enterprizes in accurately forecasting future consumer preferences.

2.
Physiol Behav ; 253: 113847, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35594931

RESUMO

Neuromarketing utilizes Brain-Computer Interface (BCI) technologies to provide insight into consumers responses on marketing stimuli. In order to achieve insight information, marketers spend about $400 billion annually on marketing, promotion, and advertisement using traditional marketing research tools. In addition, these tools like personal depth interviews, surveys, focus group discussions, etc. are expensive and frequently criticized for failing to extract actual consumer preferences. Neuromarketing, on the other hand, promises to overcome such constraints. In this work, an EEG-based neuromarketing framework is employed for predicting consumer future choice (affective attitude) while they view E-commerce products. After preprocessing, three types of features, namely, time, frequency, and time-frequency domain features are extracted. Then, wrapper-based Support Vector Machine-Recursive Feature Elimination (SVM-RFE) along with correlation bias reduction is used for feature selection. Lastly, we use SVM for categorizing positive affective attitude and negative affective attitude. Experiments show that the frontal cortex achieves the best accuracy of 98.67±2.98, 98±3.22, and 98.67±3.52 for 5-fold, 10-fold, and leave-one-subject-out (LOSO) respectively. In addition, among all the channels, Fz achieves best accuracy 90±7.81, 90.67±9.53, and 92.67±7.03 for 5-fold, 10-fold, and LOSO respectively. Subsequently, this work opens the door for implementing such a neuromarketing framework using consumer-grade devices in a real-life setting for marketers. As a result, it is evident that EEG-based neuromarketing technologies can assist brands and enterprises in forecasting future consumer preferences accurately. Hence, it will pave the way for the creation of an intelligent marketing assistive system for neuromarketing applications in future.


Assuntos
Comportamento do Consumidor , Eletroencefalografia , Lobo Frontal , Marketing , Máquina de Vetores de Suporte
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 808-811, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891413

RESUMO

The traditional marketing research tools (Personal Depth Interview, Surveys, FGD, etc.) are cost-prohibitive and often criticized for not extracting true consumer preferences. Neuromarketing tools promise to overcome such limitations. In this study, we proposed a framework, MarketBrain, to predict consumer preferences. In our experiment, we administered marketing stimuli (five products with endorsements), collected EEG signals by EMOTIV EPOC+, and used signal processing and classification algorithms to develop the prediction system. Wavelet Packet Transform was used to extract frequency bands (δ, θ, α, ß1, ß2, γ) and then statistical features were extracted for classification. Among the classifiers, Support Vector Machine (SVM) achieved the best accuracy (96.01±0.71) using 5-fold cross-validation. Results also suggested that specific target consumers and endorser appearance affect the prediction of the preference. So, it is evident that EEG-based neuromarketing tools can help brands and businesses effectively predict future consumer preferences. Hence, it will lead to the development of an intelligent market driving system for neuromarketing applications.


Assuntos
Comportamento do Consumidor , Eletroencefalografia , Processamento de Sinais Assistido por Computador , Máquina de Vetores de Suporte , Análise de Ondaletas
4.
Pharmaceutics ; 13(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34959320

RESUMO

Since the early 1990s, nanotechnology has led to new horizons in nanomedicine, which encompasses all spheres of science including chemistry, material science, biology, and biotechnology. Emerging viral infections are creating severe hazards to public health worldwide, recently, COVID-19 has caused mass human casualties with significant economic impacts. Interestingly, silver nanoparticles (AgNPs) exhibited the potential to destroy viruses, bacteria, and fungi using various methods. However, developing safe and effective antiviral drugs is challenging, as viruses use host cells for replication. Designing drugs that do not harm host cells while targeting viruses is complicated. In recent years, the impact of AgNPs on viruses has been evaluated. Here, we discuss the potential role of silver nanoparticles as antiviral agents. In this review, we focus on the properties of AgNPs such as their characterization methods, antiviral activity, mechanisms, applications, and toxicity.

5.
Clin Epidemiol Glob Health ; 12: 100811, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222717

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic is a worldwide epidemiological emergency, and the risk factors for the multiple waves with new COVID-19 strains are concerning. This study aims to identify the most significant risk factors for spreading COVID-19 to help policymakers take early measures for the next waves. METHODS: We conducted the study on randomly selected 29 countries where the pandemic had a downward trend in the daily active cases curve as of June 10, 2020. We investigated the association with the standardized spreading index and demographical, environmental, socioeconomic, and government intervention. To standardize the spreading index, we accounted for the number of tests and the timeline bias. Furthermore, we performed multiple linear regression to identify the relative importance of the variables. RESULTS: In the correlation analysis, air pollution, PM2.5 (r = 0.37, p = 0.0466), number of days to impose lockdown from first case (r = 0.38, p = 0.0424) and total confirmed cases on the first lockdown (r = 0.61, p = 0.0004) were associated with outcome measures. In the adjusted model, air pollution ( ß 1  = 4.5, p = 0.0127, |t| = 3.1) and overweight prevalence ( ß 1  = 4.7, p = 0.0187, |t| = 2.9) were the most significant exposure variable for spreading of COVID-19. CONCLUSION: Our findings showed that countries with larger PM2.5 values and comparatively more overweight populations are at higher risk of spreading COVID-19. Proper preventive measures may reduce the spreading.

6.
Comput Biol Med ; 134: 104532, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34102402

RESUMO

Sleep apnea is a common symptomatic disease affecting nearly 1 billion people around the world. The gold standard approach for determining the severity of sleep apnea is full-night polysomnography conducted in the laboratory, which is very costly and cumbersome. In this work, we propose a novel scalogram-based convolutional neural network (SCNN) to detect obstructive sleep apnea (OSA) using single-lead electrocardiogram (ECG) signals. Firstly, we use continuous wavelet transform (CWT) to convert ECG signals into conventional scalograms. In parallel, we also apply empirical mode decomposition (EMD) to the signals to find correlated intrinsic mode functions (IMFs) and then apply CWT on the IMFs to obtain hybrid scalograms. Finally, we train a lightweight CNN model on these scalograms to extract deep features for OSA detection. Experiments on the benchmark Apnea-ECG dataset demonstrate that our proposed model results in an accuracy of 94.30%, sensitivity 94.30%, specificity 94.51%, and F1-score 95.85% in per-segment classification. Our model also achieves an accuracy of 81.86%, sensitivity 71.62%, specificity 86.05%, and F1-score 69.63% for UCDDB dataset. Furthermore, our model achieves an accuracy of 100.00% in per-recording classification for Apnea-ECG dataset. The experimental results outperform the existing OSA detection approaches using ECG signals.


Assuntos
Síndromes da Apneia do Sono , Apneia Obstrutiva do Sono , Eletrocardiografia , Humanos , Redes Neurais de Computação , Polissonografia , Apneia Obstrutiva do Sono/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...