Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioelectron Med ; 6: 8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32309522

RESUMO

Background: Electrical stimulation of peripheral nerves is a widely used technique to treat a variety of conditions including chronic pain, motor impairment, headaches, and epilepsy. Nerve stimulation to achieve efficacious symptomatic relief depends on the proper selection of electrical stimulation parameters to recruit the appropriate fibers within a nerve. Recently, electrical stimulation of the vagus nerve has shown promise for controlling inflammation and clinical trials have demonstrated efficacy for the treatment of inflammatory disorders. This application of vagus nerve stimulation activates the inflammatory reflex, reducing levels of inflammatory cytokines during inflammation. Methods: Here, we wanted to test whether altering the parameters of electrical vagus nerve stimulation would change circulating cytokine levels of normal healthy animals in the absence of increased inflammation. To examine this, we systematically tested a set of electrical stimulation parameters and measured serum cytokine levels in healthy mice. Results: Surprisingly, we found that specific combinations of pulse width, pulse amplitude, and frequency produced significant increases of the pro-inflammatory cytokine tumor necrosis factor (TNF), while other parameters selectively lowered serum TNF levels, as compared to sham-stimulated mice. In addition, serum levels of the anti-inflammatory cytokine interleukin-10 (IL-10) were significantly increased by select parameters of electrical stimulation but remained unchanged with others. Conclusions: These results indicate that electrical stimulation parameter selection is critically important for the modulation of cytokines via the cervical vagus nerve and that specific cytokines can be increased by electrical stimulation in the absence of inflammation. As the next generation of bioelectronic therapies and devices are developed to capitalize on the neural regulation of inflammation, the selection of nerve stimulation parameters will be a critically important variable for achieving cytokine-specific changes.

2.
Bioelectron Med ; 5: 9, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32232099

RESUMO

BACKGROUND: Glucose is a crucial energy source. In humans, it is the primary sugar for high energy demanding cells in brain, muscle and peripheral neurons. Deviations of blood glucose levels from normal levels for an extended period of time is dangerous or even fatal, so regulation of blood glucose levels is a biological imperative. The vagus nerve, comprised of sensory and motor fibres, provides a major anatomical substrate for regulating metabolism. While prior studies have implicated the vagus nerve in the neurometabolic interface, its specific role in either the afferent or efferent arc of this reflex remains elusive. METHODS: Here we use recently developed methods to isolate and decode specific neural signals acquired from the surface of the vagus nerve in BALB/c wild type mice to identify those that respond robustly to hypoglycemia. We also attempted to decode neural signals related to hyperglycemia. In addition to wild type mice, we analyzed the responses to acute hypo- and hyperglycemia in transient receptor potential cation channel subfamily V member 1 (TRPV1) cell depleted mice. The decoding algorithm uses neural signals as input and reconstructs blood glucose levels. RESULTS: Our algorithm was able to reconstruct the blood glucose levels with high accuracy (median error 18.6 mg/dl). Hyperglycemia did not induce robust vagus nerve responses, and deletion of TRPV1 nociceptors attenuated the hypoglycemia-dependent vagus nerve signals. CONCLUSION: These results provide insight to the sensory vagal signaling that encodes hypoglycemic states and suggest a method to measure blood glucose levels by decoding nerve signals. TRIAL REGISTRATION: Not applicable.

3.
Int J Obes (Lond) ; 42(6): 1101-1111, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29795463

RESUMO

The nervous system both monitors and modulates body metabolism to maintain homoeostasis. In disease states such as obesity and diabetes, the neurometabolic interface is dysfunctional and contributes to clinical illness. The vagus nerve, in particular, with both sensory and motor fibres, provides an anatomical substrate for this interface. Its sensory fibres contain receptors for important circulating metabolic mediators, including leptin and cholecystokinin, and provide real-time information about these mediators to the central nervous system. In turn, efferent fibres within the vagus nerve participate in a brain-gut axis to regulate metabolism. In this review, we describe these vagus nerve-mediated metabolic pathways and recent clinical trials of vagus nerve stimulation for the management of obesity. These early studies suggest that neuromodulation approaches that employ electricity to tune neurometabolic circuits may represent a new tool in the clinical armamentarium directed against obesity.


Assuntos
Vias Aferentes/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Neurônios Aferentes/fisiologia , Neurotransmissores , Obesidade/fisiopatologia , Estimulação do Nervo Vago , Nervo Vago/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Humanos , Neurorretroalimentação , Neurotransmissores/uso terapêutico , Obesidade/metabolismo , Obesidade/terapia , Nervo Vago/anatomia & histologia
4.
Bioelectron Med ; 4: 3, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-32232079

RESUMO

BACKGROUND: The vagus nerve plays an important role in the regulation of organ function, including reflex pathways that regulate immunity and inflammation. Recent studies using genetically modified mice have improved our understanding of molecular mechanisms in the neural control of immunity. However, mapping neural signals transmitted in the vagus nerve in mice has been limited by technical challenges. Here, we have standardized an experimental protocol to record compound action potentials transmitted in the vagus nerve. METHODS: The vagus nerve was isolated in Balb/c and B6.129S mice, and placed either on a hook or cuff electrode. The electrical signals from the vagus nerve were digitized using either a Neuralynx or Plexon data acquisition system. Changes in the vagus nerve activity in response to anesthesia, feeding and administration of bacterial endotoxin were analyzed. RESULTS: We have developed an electrophysiological recording system to record compound action potentials from the cervical vagus nerve in mice. Cuff electrodes significantly reduce background noise and increase the signal to noise ratio as compared to hook electrodes. Baseline vagus nerve activity varies in response to anesthesia depth and food intake. Analysis of vagus neurograms in different mouse strains (Balb/c and C57BL/6) reveal no significant differences in baseline activity. Importantly, vagus neurogramactivity in wild type and TLR4 receptor knock out mice exhibits receptor dependency of endotoxin mediated signals. CONCLUSIONS: These methods for recording vagus neurogram in mice provide a useful tool to further delineate the role of vagus neural pathways in a standardized murine disease model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...