Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MAbs ; 16(1): 2316872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38381460

RESUMO

Therapeutic bioconjugates are emerging as an essential tool to combat human disease. Site-specific conjugation technologies are widely recognized as the optimal approach for producing homogeneous drug products. Non-natural amino acid (nnAA) incorporation allows the introduction of bioconjugation handles at genetically defined locations. Escherichia coli (E. coli) is a facile host for therapeutic nnAA protein synthesis because it can stably replicate plasmids encoding genes for product and nnAA incorporation. Here, we demonstrate that by engineering E. coli to incorporate high levels of nnAAs, it is feasible to produce nnAA-containing antibody fragments and full-length immunoglobulin Gs (IgGs) in the cytoplasm of E. coli. Using high-density fermentation, it was possible to produce both of these types of molecules with site-specifically incorporated nnAAs at titers > 1 g/L. We anticipate this strategy will help simplify the production and manufacture of promising antibody therapeutics.


Assuntos
Aminoácidos , Escherichia coli , Humanos , Aminoácidos/genética , Escherichia coli/genética , Fragmentos de Imunoglobulinas , Anticorpos/genética
2.
Bioengineering (Basel) ; 10(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978695

RESUMO

The XpressCF+® cell-free protein synthesis system is a robust platform for the production of non-natural amino acids containing antibodies, which enable the site-specific conjugation of homogeneous antibody drug conjugates (ADCs) via click chemistry. Here, we present a robust and scalable means of achieving a 50-100% increase in IgG titers by combining the high productivity of cell-based protein synthesis with the unique ability of XpressCF+® reactions to produce correctly folded and assembled IgGs containing multiple non-natural amino acids at defined positions. This hybrid technology involves the pre-expression of an IgG light-chain (LC) protein in a conventional recombinant E. coli expression system, engineered to have an oxidizing cytoplasm. The prefabricated LC subunit is then added as a reagent to the cell-free protein synthesis reaction. Prefabricated LC increases IgG titers primarily by reducing the protein synthesis burden per IgG since the cell free translation machinery is only responsible for synthesizing the HC protein. Titer increases were demonstrated in four IgG products in scales ranging from 100-µL microplate reactions to 0.25-L stirred tank bioreactors. Similar titer increases with prefabricated LC were also demonstrated for a bispecific antibody in the scFvFc-FabFc format, demonstrating the generality of this approach. Prefabricated LC also increases robustness in cell-free reactions since it eliminates the need to fine-tune the HC-to-LC plasmid ratio, a critical parameter influencing IgG assembly and quality when the two IgG subunits are co-expressed in a single reaction. ADCs produced using prefabricated LC were shown to be identical to IgGs produced in cell-free alone by comparing product quality, in vitro cell killing, and FcRn receptor binding assays. This approach represents a significant step towards improving IgG titers and the robustness of cell-free protein synthesis reactions by integrating in vivo and in vitro protein production platforms.

3.
Sci Rep ; 7(1): 3026, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28596531

RESUMO

Amber codon suppression for the insertion of non-natural amino acids (nnAAs) is limited by competition with release factor 1 (RF1). Here we describe the genome engineering of a RF1 mutant strain that enhances suppression efficiency during cell-free protein synthesis, without significantly impacting cell growth during biomass production. Specifically, an out membrane protease (OmpT) cleavage site was engineered into the switch loop of RF1, which enables its conditional inactivation during cell lysis. This facilitates extract production without additional processing steps, resulting in a scaleable extract production process. The RF1 mutant extract allows nnAA incorporation at previously intractable sites of an IgG1 and at multiple sites in the same polypeptide chain. Conjugation of cytotoxic agents to these nnAAs, yields homogeneous antibody drug conjugates (ADCs) that can be optimized for conjugation site, drug to antibody ratio (DAR) and linker-warheads designed for efficient tumor killing. This platform provides the means to generate therapeutic ADCs inaccessible by other methods that are efficient in their cytotoxin delivery to tumor with reduced dose-limiting toxicities and thus have the potential for better clinical impact.


Assuntos
Aminoácidos/química , Imunoconjugados , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Engenharia de Proteínas , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Códon de Terminação , Estabilidade de Medicamentos , Humanos , Imunoconjugados/química , Imunoconjugados/isolamento & purificação , Imunoconjugados/metabolismo , Imunoconjugados/farmacologia , Imunoglobulina G/química , Imunoglobulina G/farmacologia , Espectrometria de Massas , Modelos Moleculares , Mutação , Fatores de Terminação de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Trastuzumab/química , Trastuzumab/farmacologia
4.
Biotechnol Prog ; 31(3): 823-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826247

RESUMO

Cell-free protein synthesis (CFPS) systems allow for robust protein expression with easy manipulation of conditions to improve protein yield and folding. Recent technological developments have significantly increased the productivity and reduced the operating costs of CFPS systems, such that they can compete with conventional in vivo protein production platforms, while also offering new routes for the discovery and production of biotherapeutics. As cell-free systems have evolved, productivity increases have commonly been obtained by addition of components to previously designed reaction mixtures without careful re-examination of the essentiality of reagents from previous generations. Here we present a systematic sensitivity analysis of the components in a conventional Escherichia coli CFPS reaction mixture to evaluate their optimal concentrations for production of the immunoglobulin G trastuzumab. We identify eight changes to the system, which result in optimal expression of trastuzumab. We find that doubling the potassium glutamate concentration, while entirely eliminating pyruvate, coenzyme A, NAD, total tRNA, folinic acid, putrescine and ammonium glutamate, results in a highly productive cell-free system with a 95% reduction in reagent costs (excluding cell-extract, plasmid, and T7 RNA polymerase made in-house). A larger panel of other proteins was also tested and all show equivalent or improved yields with our simplified system. Furthermore, we demonstrate that all of the reagents for CFPS can be combined in a single freeze-thaw stable master mix to improve reliability and ease of use. These improvements are important for the application of the CFPS system in fields such as protein engineering, high-throughput screening, and biotherapeutics.


Assuntos
Escherichia coli/metabolismo , Imunoglobulina G/biossíntese , Biossíntese de Proteínas , Engenharia de Proteínas/métodos , Trastuzumab/biossíntese , Coenzima A/química , RNA Polimerases Dirigidas por DNA/química , Escherichia coli/genética , Expressão Gênica , Ácido Glutâmico/química , Imunoglobulina G/genética , Leucovorina/química , NAD/química , Poliaminas/química , Dobramento de Proteína , Putrescina/química , Ácido Pirúvico/química , RNA de Transferência/química , Reprodutibilidade dos Testes , Trastuzumab/genética , Proteínas Virais/química
5.
Protein Eng Des Sel ; 27(4): 97-109, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24586053

RESUMO

Selection technologies such as ribosome display enable the rapid discovery of novel antibody fragments entirely in vitro. It has been assumed that the open nature of the cell-free reactions used in these technologies limits selections to single-chain protein fragments. We present a simple approach for the selection of multi-chain proteins, such as antibody Fab fragments, using ribosome display. Specifically, we show that a two-chain trastuzumab (Herceptin) Fab domain can be displayed in a format which tethers either the heavy or light chain to the ribosome while retaining functional antigen binding. Then, we constructed synthetic Fab HC and LC libraries and performed test selections against carcinoembryonic antigen (CEA) and vascular endothelial growth factor (VEGF). The Fab selection output was reformatted into full-length immunoglobulin Gs (IgGs) and directly expressed at high levels in an optimized cell-free system for immediate screening, purification and characterization. Several novel IgGs were identified using this cell-free platform that bind to purified CEA, CEA positive cells and VEGF.


Assuntos
Técnicas de Visualização da Superfície Celular/métodos , Sistema Livre de Células , Fragmentos Fab das Imunoglobulinas , Biblioteca de Peptídeos , Anticorpos/genética , Anticorpos Monoclonais Humanizados/genética , Antígeno Carcinoembrionário/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Imunoglobulina G/genética , Trastuzumab , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
J Biol Chem ; 278(52): 52363-70, 2003 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-14559895

RESUMO

Corin is a cardiac transmembrane serine protease. In cell-based studies, corin converted pro-atrial natriuretic peptide (pro-ANP) to mature ANP, suggesting that corin is potentially the pro-ANP convertase. In this study, we evaluated the importance of the transmembrane domain and activation cleavage in human corin. We showed that a soluble corin that consists of only the extracellular domain was capable of processing recombinant human pro-ANP in cell-based assays. In contrast, a mutation at the conserved activation cleavage site, R801A, abolished the function of corin, demonstrating that the activation cleavage is essential for corin activity. These results allowed us to design, express, and purify a mutant soluble corin, EKsolCorin, that contains an enterokinase recognition sequence at the activation cleavage site. Purified EKsolCorin was activated by enterokinase in a dose-dependent manner. Activated EK-solCorin had hydrolytic activity toward peptide substrates with a preference for Arg and Lys residues in the P-1 position. This activity of EKsolCorin was inhibited by trypsin-like serine protease inhibitors but not inhibitors of chymotrypsin-like, cysteine-, or metallo-proteases. In pro-ANP processing assays, purified active EKsolCorin converted recombinant human pro-ANP to biologically active ANP in a highly sequence-specific manner. The pro-ANP processing activity of EKsolCorin was not inhibited by human plasma. Together, our data indicate that the transmembrane domain is not necessary for the biological activity of corin but may be a mechanism to localize corin at specific sites, whereas the proteolytic cleavage at the activation site is an essential step in controlling the activity of corin.


Assuntos
Membrana Celular/metabolismo , Serina Endopeptidases/química , Fator Natriurético Atrial/química , Sítios de Ligação , Western Blotting , Linhagem Celular , GMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Enteropeptidase/metabolismo , Inibidores Enzimáticos/farmacologia , Fator Xa/química , Vetores Genéticos , Humanos , Calicreínas/química , Cinética , Mutação , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Trombina/química , Transfecção , Tripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...