Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535689

RESUMO

We report a new facile method for the synthesis of prolate cobalt ferrite nanoparticles without additional stabilizers, which involves a co-precipitation reaction of Fe3+ and Co2+ ions in a static magnetic field. The magnetic field is demonstrated to be a key factor for the 1D growth of cobalt ferrite nanocrystals in the synthesis. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy are applied to characterize the morphology and structure of the obtained nanoparticles. According to TEM, they represent nanorods with a mean length of 25 nm and a diameter of 3.4 nm that have a monocrystalline structure with characteristic plane spacing of 2.9 Å. XRD and Raman spectroscopy confirm the spinel CoFe2O4 structure of the nanorods. After aging, the synthesized nanorods exhibit maximum saturation magnetization and coercivity equal to 30 emu/g and 0.3 kOe, respectively. Thus, the suggested method is a simple and "green" way to prepare CoFe2O4 nanorods with high aspect ratios and pronounced magnetic properties, which are important for various practical applications, including biomedicine, energy storage, and the preparation of anisotropic magnetic nanocomposites.

2.
Molecules ; 29(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276608

RESUMO

A swarf of aluminum alloy with high corrosion resistance and ductility was successfully converted into fine hydro reactive powders via ball milling with silver powder and either lithium chloride or gallium. The latter substances significantly intensified particle size reduction, while silver formed 'cathodic' sites (Ag, Ag2Al), promoting Al corrosion in aqueous saline solutions with hydrogen generation. The diffraction patterns, microphotographs, and elemental analysis results demonstrated partial aluminum oxidation in the samples and their contamination with tungsten carbide from milling balls. Those factors were responsible for obtaining lower hydrogen yields than expected. For AlCl3 solution at 60 °C, Al-LiCl-Ag, Al-LiCl, Al-Ga-Ag, and Al-Ga composites delivered (84.6 ± 0.2), (86.8 ± 1.4), (80.2 ± 0.5), and (76.7 ± 0.7)% of the expected hydrogen, respectively. Modification with Ag promoted Al oxidation, thus providing higher hydrogen evolution rates. The samples with Ag were tested in a CaCl2 solution as well, for which the reaction proceeded much more slowly. At a higher temperature (80 °C) after 3 h of experiment, the corresponding hydrogen yields for Al-LiCl-Ag and Al-Ga-Ag powders were (46.7 ± 2.1) and (31.8 ± 1.9)%. The tested Ag-modified composite powders were considered promising for hydrogen generation and had the potential for further improvement to deliver higher hydrogen yields.

3.
Nanomaterials (Basel) ; 13(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446499

RESUMO

Extraordinary properties of two-dimensional materials make them attractive for applications in different fields. One of the prospective niches is optical applications, where such types of materials demonstrate extremely sensitive performance and can be used for labeling. However, the optical properties of liquid-exfoliated 2D materials need to be analyzed. The purpose of this work is to study the absorption and luminescent properties of MoS2 exfoliated in the presence of sodium cholate, which is the most often used surfactant. Ultrasound bath and mixer-assisted exfoliation in water and dimethyl sulfoxide were used. The best quality of MoS2 nanosheets was achieved using shear-assisted liquid-phase exfoliation as a production method and sodium cholate (SC) as a surfactant. The photoluminescent properties of MoS2 nanosheets varied slightly when changing the surfactant concentrations in the range C(SC) = 0.5-2.5 mg/mL. This work is of high practical importance for further enhancement of MoS2 photoluminescent properties via chemical functionalization.

4.
J Hazard Mater ; 457: 131817, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37327606

RESUMO

Porous carbons are not favorable for sorption of heavy metals and radionuclides due to absence of suitable binding sites. In this study we explored the limits for surface oxidation of "activated graphene" (AG), porous carbon material with the specific surface area of ∼2700 m2/g produced by activation of reduced graphene oxide (GO). Set of "Super-Oxidized Activated Graphene" (SOAG) materials with high abundance of carboxylic groups on the surface were produced using "soft" oxidation. High degree of oxidation comparable to standard GO (C/O=2.3) was achieved while keeping 3D porous structure with specific surface area of ∼700-800 m2/. The decrease in surface area is related to the oxidation-driven collapse of mesopores while micropores showed higher stability. The increase in the oxidation degree of SOAG is found to result in progressively higher sorption of U(VI), mostly related to the increase in abundance of carboxylic groups. The SOAG demonstrated extraordinarily high sorption of U(VI) with the maximal capacity up to 5400 µmol/g, that is 8.4 - fold increase compared to non-oxidized precursor AG, ∼50 -fold increase compared to standard graphene oxide and twice higher than extremely defect-rich graphene oxide. The trends revealed here show a way to further increase sorption if similar oxidation degree is achieved with smaller sacrifice of surface area.

5.
Materials (Basel) ; 16(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37374606

RESUMO

Zeolites and metal-doped zeolites are now widely considered as low-temperature hydrocarbon traps to be a part of emission control systems in automobiles. However, due to the high temperature of exhaust gases, the thermal stability of such sorbent materials is of great concern. To avoid the thermal instability problem, in the present work, laser electrodispersion was used to deposit Pd particles on the surface of ZSM-5 zeolite grains (SiO2/Al2O3 = 55 and SiO2/Al2O3 = 30) to obtain Pd/ZSM-5 materials with a Pd loading as low as 0.03 wt.%. The thermal stability was evaluated in a prompt thermal aging regime involving thermal treatment at temperatures up to 1000 °C in a real reaction mixture (CO, hydrocarbons, NO, an excess of O2, and balance N2) and a model mixture of the same composition with the exception of hydrocarbons. Low-temperature nitrogen adsorption and X-ray diffraction analysis were used to examine the stability of the zeolite framework. Special attention was paid to the state of Pd after thermal aging at varied temperatures. By means of transmission electron microscopy, X-ray photoelectron spectroscopy, and diffuse reflectance UV-Vis spectroscopy, it was shown that palladium, having been initially located on the surface of zeolite, undergoes oxidation and migrates into the zeolite's channels. This enhances the trapping of hydrocarbons and their subsequent oxidation at lower temperatures.

6.
Molecules ; 28(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37050001

RESUMO

A fast method for preparing aqueous graphene oxide (GO) dispersions by electrochemical oxidation of a graphite anode without preliminary intercalation with oxidizing agents is proposed. Ultrasonic probing was used in the modulation mode of ultrasonic waves (work/rest) for more efficient graphite oxidation-exfoliation. It is shown that the 4/2 s mode of ultrasonic modulation is the most effective due to the probe material's low corrosion while maintaining the optimum synthesis temperature not exceeding 30-35 °C and achieving the best characteristics of the resulting product. Three cases of anodic oxidation of graphite to obtain graphene oxide were considered: (1) a combined cathode-anode compartment, (2) a split cathode-anode salt-bridged compartment, and (3) separated anode compartment with a 3.5 kDa dialysis membrane. It was determined that the approach to synthesis with a divided cathode-anode compartment makes it possible to obtain GO sheets with fewer defects compared to chemical methods or methods with a combined cathode-anode compartment and makes it possible to control the oxidation degree of the material (C:O ratio) by varying the current density. The prepared samples showed good stability for more than six months. The spectral and morphological characteristics were studied. Using chemiluminometry in the luminol/Co(II)/H2O2 system, the antioxidant properties concerning three key reactive oxygen species (H2O2, superoxide anion radical, and hydroxyl radical) were demonstrated. It was also shown that the prepared GO dispersions do not induce lipid and phospholipid peroxidation.

7.
Nanomaterials (Basel) ; 12(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558343

RESUMO

Transformation of carbon oxides into valuable feedstocks is an important challenge nowadays. Carbon oxide hydrogenation to hydrocarbons over iron-based catalysts is one of the possible ways for this transformation to occur. Carbon supports effectively increase the dispersion of such catalysts but possess a very low bulk density, and their powders can be toxic. In this study, spark plasma sintering was used to synthesize new bulk and dense potassium promoted iron-based catalysts, supported on N-doped carbon nanomaterials, for hydrocarbon synthesis from syngas. The sintered catalysts showed high activity of up to 223 µmolCO/gFe/s at 300-340 °C and a selectivity to C5+ fraction of ~70% with a high portion of olefins. The promising catalyst performance was ascribed to the high dispersity of iron carbide particles, potassium promotion of iron carbide formation and stabilization of the active sites with nitrogen-based functionalities. As a result, a bulk N-doped carbon-supported iron catalyst with 3D structure was prepared, for the first time, by a fast method, and demonstrated high activity and selectivity in hydrocarbon synthesis. The proposed technique can be used to produce well-shaped carbon-supported catalysts for syngas conversion.

8.
Dalton Trans ; 51(48): 18446-18461, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36416592

RESUMO

The dry reforming of methane to syngas (DRM) is of increasing significance concerning, first, the production of raw materials for commercial organic/petrochemical syntheses and for hydrogen energetic, and, second, the utilization of two most harmful greenhouse gases. Herein, new SmCoO3-based DRM catalysts derived from heterometallic precursors and operated without preliminary reduction are reported. For the first time, the effect of supercritical fluids-assisted modification of the SmCoO3-derived catalysts combined with the re-oxidation of spent catalysts to SmCoO3 onto its long-term performance was studied. In particular, the modification of heterometallic precursors by supercritical antisolvent precipitation (SAS) considerably decreases coke formation upon the exploitation of the derived SmCoO3 sample. Moreover, the re-oxidation of the corresponding spent catalysts followed by pre-heating under N2 affords catalysts that stably provide syngas yields of 88-95% for at least 41 h at 900 °C. The achieved yields are among the highest ones currently reported for DRM catalysts derived from both LnMO3 perovskites and related oxides. The origins of such good performance are discussed. Given the simplicity and availability of all the applied methods and chemicals, this result opens prospects for exploiting SAS in the design of efficient DRM catalysts.

9.
Molecules ; 27(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36144826

RESUMO

A series of CrOx-ZrO2-SiO2 (CrZrSi) catalysts was prepared by a "one-pot" template-assisted evaporation-induced self-assembly process. The chromium content varied from 4 to 9 wt.% assuming Cr2O3 stoichiometry. The catalysts were characterized by XRD, SEM-EDX, temperature-programmed reduction (TPR-H2), Raman spectroscopy, and X-ray photoelectron spectroscopy. The catalysts were tested in non-oxidative propane dehydrogenation at 500-600 °C. The evolution of active sites under the reaction conditions was investigated by reductive treatment of the catalysts with H2. The catalyst with the lowest Cr loading initially contained amorphous Cr3+ and dispersed Cr6+ species. The latter reduced under reaction conditions forming Cr3+ oxide species with low activity in propane dehydrogenation. The catalysts with higher Cr loadings initially contained highly dispersed Cr3+ species stable under the reaction conditions and responsible for high catalyst activity. Silica acted both as a textural promoter that increased the specific surface area of the catalysts and as a stabilizer that inhibited crystallization of Cr2O3 and ZrO2 and provided the formation of coordinatively unsaturated Zr4+ centers. The optimal combination of Cr3+ species and coordinatively unsaturated Zr4+ centers was achieved in the catalyst with the highest Cr loading. This catalyst showed the highest efficiency.

10.
Materials (Basel) ; 15(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35407790

RESUMO

Hydrophilic or superhydrophilic materials in some cases are considered to be potentially icephobic due to a low ice-adhesion strength to such materials. Here, the evolution of the properties of a superhydrophilic aluminum alloy with hierarchical roughness, fabricated by laser processing, was studied in contact with water during prolonged cyclic variation in temperature. It was shown that the chemical interaction of rough alumina with water molecules caused the substitution of the surface oxide by polymorphic crystalline gibbsite or bayerite phases while preserving hierarchical roughness. Due to such substitution, mechanical durability was notably compromised. Thus, in contrast to the superhydrophobic laser-processed samples, the superhydrophilic samples targeted on the exploitation in an open atmosphere as a material with anti-icing properties cannot be considered as the industrially attractive way to combat icing.

11.
Phys Chem Chem Phys ; 23(41): 23909-23921, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34651626

RESUMO

The electrical conductivity, density and diffusion coefficients of trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)amide ([P66614][NTf2]) ionic liquid and its binary solutions in acetonitrile, propionitrile, dimethyl and diethyl carbonates were measured in the temperature range of 293-348 K. The electrical conductivity - ionic liquid mole fraction dependencies for the binary solutions were fitted with the empirical Casteel-Amis equation. The temperature dependencies of electrical conductivity were analyzed using the Arrhenius, Litovitz and Vogel-Fulcher-Tammann approaches. The dependences of the Arrhenius activation energy and pre-exponential factor on the mole fraction of ionic liquid in the solutions were fitted with the empirical equations proposed in the literature. The thermo-gravimetric analysis combined with mass spectrometry demonstrated the high thermal stability of [P66614][NTf2] up to 600 K. At higher temperatures the decomposition of [P66614][NTf2] proceeded via the elimination of alkyl radicals as a result of the nucleophilic attack of reactive intermediates to the [P66614]+ cation with the formation of trialkylphosphines. The activation energies of the thermal destruction of [P66614][NTf2] were calculated using the Kissinger equation and non-linear integral isoconversional model.

12.
Nanotechnology ; 32(43)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34271553

RESUMO

Graphene-based materials play an essential role in a wide range of modern technologies due to their surface properties such as adsorption capacity and controllable wettability, which depend on the production methods. For practical applications, it is crucial to control the surface properties to achieve the desired wetting characteristics, which can be described with the contact angle (CA). Here, we experimentally investigate the wettability properties of the carbon nanowalls and show how to manage a wetting transition from superhydrophobic to superhydrophilic states. A CA of 170° was reached with direct plasma synthesis, while an angle smaller than 20° was achieved during the atmosphere plasma modification. Combining the formation of the surface groups due to the plasma treatment results and the macroscale wetting behavior in terms of the Cassie-Baxter model, we qualitatively explain how the observed wetting enhancement is induced by both controlled chemical and geometrical surface-heterogeneity.

13.
J Environ Manage ; 290: 112655, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33892235

RESUMO

For the first time, the basics of waste-free technology for capturing heavy metal ions from urban surface runoff from residential areas of the city with the final utilization of the regenerate were developed. The technology eliminates the subsequent contamination of the lithosphere and atmosphere by regeneration products. The expediency of using fibrous chemosorbents (cationic and polyampholyte) for capturing heavy metal ions from urban surface runoff of residential areas of megalopolises has been justified because of possibility of recycling heavy metal ions and regenerating the sorbent. Model solutions of Fe, Cu, Zn, Pb salts, as well as samples of solutions of real surface effluents were studied. Small experimental samples of filters of various designs were designed and manufactured. The filters were tested at a functioning treatment facility. It was demonstrated that the content of Fe3+, Cu2+, Zn2+, and Pb2+ ions in real surface effluents decreased by 1.4-7 times after passing the effluents even through these small experimental filters. The expediency and possibility of recycling the regenerate as inorganic pigments for the paint industry is shown.


Assuntos
Metais Pesados , Poluentes do Solo , China , Cidades , Monitoramento Ambiental , Metais Pesados/análise , Reciclagem , Poluentes do Solo/análise , Tecnologia
14.
Mater Sci Eng C Mater Biol Appl ; 121: 111859, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33579491

RESUMO

In this study, we developed a method to prepare inorganic nanoparticles in situ on the surface of cationized cellulose using a rapid microwave-assisted synthesis. Selenium nanoparticles (SeNPs) were employed as a novel type of antimicrobial agent and, using the same method, silver nanoparticles (AgNPs) were also prepared. The results demonstrated that both SeNPs and AgNPs of about 100 nm in size were generated on the cationized cellulose fabrics. The antibacterial tests revealed that the presence of SeNPs clearly improved the antibacterial performance of cationized cellulose in a similar way as AgNPs. The functionalised fabrics demonstrated strong antibacterial activity when assessed using the challenge test method, even after repeated washing. Microscopic investigations revealed that the bacterial cells were visually damaged through contact with the functionalised fabrics. Furthermore, the functionalised fabrics showed low cytotoxicity towards human cells when tested in vitro using an indirect contact method. In conclusion, this study provides a new approach to prepare cationic cellulose fabrics functionalised with Se or Ag nanoparticles, which exhibit excellent antimicrobial performance, low cytotoxicity and good laundry durability. We have demonstrated that SeNPs can be a good alternative to AgNPs and the functionalised fabrics have great potential to serve as an anti-infective material.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Selênio , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Celulose , Humanos , Testes de Sensibilidade Microbiana , Prata
15.
Molecules ; 25(11)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512896

RESUMO

New techniques were developed for the synthesis of monolithic highly porous composite aerogels (hydrogels) from reduced graphene oxide and carbon nanotubes, as well as graphene-containing composites based on mesoporous activated carbon. Simple operations for hydrophilization of synthesized samples were proposed. New electrode materials for electrosorption and deionization of water were fabricated. The resulting materials were investigated and tested in electrochemical cells for membrane capacitive deionization (MCDI).


Assuntos
Carbono/química , Condutividade Elétrica , Eletrodos , Grafite/química , Nanotubos de Carbono/química , Purificação da Água/instrumentação , Purificação da Água/métodos , Membranas Artificiais , Porosidade
16.
Molecules ; 26(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396955

RESUMO

A mesoporous support based on silica and zirconia (ZS) was used to prepare monometallic 1 wt% Pd/ZS, 10 wt% Fe/ZS, and bimetallic FePd/ZS catalysts. The catalysts were characterized by TPR-H2, XRD, SEM-EDS, TEM, AAS, and DRIFT spectroscopy of adsorbed CO after H2 reduction in situ and tested in hydrodechlorination of environmental pollutant 4-chlorophelol in aqueous solution at 30 °C. The bimetallic catalyst demonstrated an excellent activity, selectivity to phenol and stability in 10 consecutive runs. FePd/ZS has exceptional reducibility due to the high dispersion of palladium and strong interaction between FeOx and palladium, confirmed by TPR-H2, DRIFT spectroscopy, XRD, and TEM. Its reduction occurs during short-time treatment with hydrogen in an aqueous solution at RT. The Pd/ZS was more resistant to reduction but can be activated by aqueous phenol solution and H2. The study by DRIFT spectroscopy of CO adsorbed on Pd/ZS reduced in harsh (H2, 330 °C), medium (H2, 200 °C) and mild conditions (H2 + aqueous solution of phenol) helped to identify the reasons of the reducing action of phenol solution. It was found that phenol provided fast transformation of Pd+ to Pd0. Pd/ZS also can serve as an active and stable catalyst for 4-PhCl transformation to phenol after proper reduction.


Assuntos
Cloro/química , Clorofenóis/química , Ferro/química , Paládio/química , Dióxido de Silício/química , Eliminação de Resíduos Líquidos/métodos , Zircônio/química , Adsorção , Catálise , Hidrogênio , Microscopia Eletrônica de Varredura , Nitrogênio/química , Fenol/química , Porosidade , Temperatura , Purificação da Água
17.
Phys Chem Chem Phys ; 21(24): 13234-13240, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31180100

RESUMO

Adsorption of model polar (water) and non-polar (n-hexane) compounds on the surface of oxidized and non-oxidized carbon nanotube (CNT) supports at different stages of Co/CNT catalyst preparation has been studied to reveal the influence of the surface functionalization of the CNT support on the catalyst selectivity in Fischer-Tropsch synthesis (FTS). Dynamic vapor sorption experiments showed that defunctionalization of the surface of the CNT support during catalyst annealing and reduction led to its hydrophobization and, as a result, no noticeable difference was observed between the adsorption properties of the oxidized and non-oxidized supports towards water and hydrocarbons. Therefore, oxidation of the CNT support does not significantly affect the adsorption properties of the supported catalyst and it is not a crucial factor for the catalyst selectivity in FTS.

18.
Sci Rep ; 9(1): 6716, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040328

RESUMO

Cycling stability and specific capacitance are the most critical features of energy sources. Nitrogen incorporation in crystalline carbon lattice allows to increase the capacitance without increasing the mass of electrodes. Despite the fact that many studies demonstrate the increase in the capacitance of energy sources after nitrogen incorporation, the mechanism capacitance increase is still unclear. Herein, we demonstrate the simple approach of plasma treatment of carbon structures, which leads to incorporation of 3 at.% nitrogen into Carbon NanoWalls. These structures have huge specific surface area and can be used for supercapacitor fabrication. After plasma treatment, the specific capacitance of Carbon NanoWalls increased and reached 600 F g-1. Moreover, we made a novel DFT simulation which explains the mechanism of nitrogen incorporation into the carbon lattice. This work paves the way to develop flexible thin film supercapacitors based on carbon nanowalls.

19.
Inorg Chem ; 58(7): 4275-4288, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30888157

RESUMO

Electrical conduction and oxygen diffusion mobility in the bixbyite ( Ia3̅) and rhombohedral ( R3̅) polymorphs of the Ln6MoO12-Δ (Ln = Er, Tm, Yb; Δ = δ, δ1, δ2; δ1 > δ2) heavy lanthanide molybdates, belonging to new, previously unexplored classes of potential mixed (ionic-electronic) conductors, have been studied in the range of 200-900 °C. The oxygen self-diffusion coefficient in bixbyite ( Ia3̅) Yb6MoO12-δ phase estimated by the temperature-programmed heteroexchange with C18O2 was shown to be much higher than that for rhombohedral ( R3̅) RI (with large oxygen deficiency) and ( R3̅) RII (with small oxygen deficiency) Ln6MoO12-Δ (Ln = Tm, Yb; Δ = δ1; δ1 > δ2) oxides. According to the activation energy for total conduction in ambient air, 0.99, 0.93, and 1.01 eV in Er6MoO12-δ, Tm6MoO12-δ, and Yb6MoO12-δ bixbyites, respectively, oxygen ion conductivity prevails in the range ∼200-500 °C. Oxygen mobility data for the rhombohedral Ln6MoO12-Δ (Ln = Er, Tm, Yb; Δ = δ1, δ2) phases RI and RII indicate that the oxygen in these phases exhibits mobility at much higher temperatures, such as those above 600-700 °C. Accordingly, below 600-700 °C they have predominantly electronic conductivity. As shown by total conductivity study of Ln6MoO12-δ (Ln = Er, Tm, Yb) bixbyites ( Ia3̅) and rhombohedral phases Ln6MoO12-Δ (Ln = Er, Tm, Yb; Δ = δ1, δ2) ( R3̅) in dry and wet air, the proton conductivity contribution exists only in Ln6MoO12-δ (Ln = Er, Tm, Yb) bixbyites up to 450-600 °C and decreases with a decreasing of the lanthanide ionic radius. The obtained data on the mobility of oxygen and the presence of proton contribution in bixbyites in the 300-600 °C temperature range make it possible to confirm unequivocally that Ln6MoO12-δ (Ln = Er, Tm, Yb) bixbyites are mixed electron-proton conductors at these temperatures.

20.
Phys Chem Chem Phys ; 20(37): 24117-24122, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30204182

RESUMO

Thermal defunctionalization of oxidized jellyfish-like few-layer graphene nanoflakes was studied under non-isothermal conditions by simultaneous thermal analysis. Activation energies for thermal decomposition of different oxygen functional groups were calculated by the Kissinger method and compared with those for oxidized carbon nanotubes. Oxygen content in graphene nanoflakes was found to significantly affect the decomposition activation energies of carboxylic and keto/hydroxy acids because of their acceptor properties and strong distortion of the graphene layers at the edges of the nanoflakes. The structure of the carbon material and the oxygen chemical state significantly influence the decomposition kinetics of thermally stable oxygen-containing groups. The activation energy for thermal decomposition of phenol groups (110-150 kJ mol-1) is close to that for graphene oxide reduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...