Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(21): 213401, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35687429

RESUMO

We experimentally engineer a moatlike dispersion in a system of weakly interacting bosons. By periodically modulating the amplitude of a checkerboard optical lattice, the two lowest isolated bands are hybridized such that the single particle energy displays a continuum of nearly degenerate minima that lie along a circle in reciprocal space. The moatlike structure is confirmed by observing a zero group velocity at nonzero quasimomentum and we directly observe the effect of the modified dispersion on the trajectory of the center of mass position of the condensate. We measure the lifetime of condensates loaded into different moat bands at different quasimomenta and compare to theoretical predictions based on a linear stability analysis of Bogoliubov excitations. We find that the condensate decay increases rapidly as the quasimomentum is decreased below the radius of the moat minimum, and argue that such dynamical instability is characteristic of moatlike dispersions, including spin-orbit coupled systems. The ground state of strongly interacting bosons in such degenerate energy landscapes is expected to be highly correlated, and our work represents a step toward realizing fractional quantum Hall-like states of bosons in an optical lattice.

2.
Phys Rev X ; 9(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-32117577

RESUMO

We experimentally investigate the effects of parametric instabilities on the short-time heating process of periodically-driven bosons in 2D optical lattices with a continuous transverse (tube) degree of freedom. We analyze three types of periodic drives: (i) linear along the x-lattice direction only, (ii) linear along the lattice diagonal, and (iii) circular in the lattice plane. In all cases, we demonstrate that the BEC decay is dominated by the emergence of unstable Bogoliubov modes, rather than scattering in higher Floquet bands, in agreement with recent theoretical predictions. The observed BEC depletion rates are much higher when shaking both along x and y directions, as opposed to only x or only y. We also report an explosion of the decay rates at large drive amplitudes, and suggest a phenomenological description beyond Bogoliubov theory. In this strongly-coupled regime, circular drives heat faster than diagonal drives, which illustrates the non-trivial dependence of the heating on the choice of drive.

3.
Rev Sci Instrum ; 89(7): 073110, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30068106

RESUMO

We present a piezo-driven translatable mirror with excellent pointing stability, capable of driving at frequencies up to tens of kilohertz. Our system uses a tripod of piezo actuators with independently controllable drive voltages, where the ratios of the individual drive voltages are tuned to minimize residual tilting. Attached to a standard ∅ = 12.7 mm mirror, the system has a resonance-free mechanical bandwidth up to 51 kHz, with displacements up to 2 µm at 8 kHz. The maximum static steering error is 5.5 µrad/µm displaced, and the dynamic steering error is lower than 0.6 µrad µm-1. This simple design should be useful for a large set of optical applications where tilt-free displacements are required, and we demonstrate its application in an ensemble of cold atoms trapped in periodically driven optical lattices.

4.
Phys Rev A (Coll Park) ; 96(5)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39193529

RESUMO

Strong dipole-exchange interactions due to spontaneously produced contaminant states can trigger rapid dephasing in many-body Rydberg ensembles [E. Goldschmidt et al., PRL 116, 113001 (2016)]. Such broadening has serious implications for many proposals to coherently use Rydberg interactions, particularly Rydberg dressing proposals. The dephasing arises as a runaway process where the production of the first contaminant atoms facilitates the creation of more contaminant atoms. Here we study the time dependence of this process with stroboscopic approaches. Using a pump-probe technique, we create an excess "pump" Rydberg population and probe its effect with a different "probe" Rydberg transition. We observe a reduced resonant pumping rate and an enhancement of the excitation on both sides of the transition as atoms are added to the pump state. We also observe a timescale for population growth significantly shorter than predicted by homogeneous mean-field models, as expected from a clustered growth mechanism where high-order correlations dominate the dynamics. These results support earlier works and confirm that the time scale for the onset of dephasing is reduced by a factor which scales as the inverse of the atom number. In addition, we discuss several approaches to minimize these effects of spontaneous broadening, including stroboscopic techniques and operating at cryogenic temperatures. It is challenging to avoid the unwanted broadening effects, but under some conditions they can be mitigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA