Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37759760

RESUMO

Currently, the contribution of trace amine-associated receptors (TAARs) to breast cancer (BC) is recognized, but their associations with various pathological characteristics are not yet understood. There is accumulated transcriptomic data for BC tumors, which are represented in publicly accessible databases. We estimated TAARs' (including TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) associations with BC stage, grade, and molecular subtypes in these data and identified that the expression of all TAARs was associated with more unfavorable cancer subtypes, including basal-like and HER2-positive tumors. Also, the significant upregulation of all TAARs was demonstrated in circulating tumor cells compared to the metastatic lesions. Considering that co-expressed genes are more likely to be involved in the same biologic processes, we analyzed genes that are co-expressed with TAARs in BC. These gene sets were enriched with the genes of the olfactory transduction pathway and neuroactive ligand-receptor interaction participants. TAARs are co-expressed with G-protein-coupled receptors of monoamine neurotransmitters including dopamine, norepinephrine, and serotonin as well as with other neuroactive ligand-specific receptors. Since TAAR1 is able to modulate the activity of monoamine receptors that are involved in the regulation of BC growth, TAAR1 and potentially other TAARs may be regarded as prospective therapeutic targets for breast cancer.

2.
Elife ; 92020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33320087

RESUMO

The inner nuclear membrane is functionalized by diverse transmembrane proteins that associate with nuclear lamins and/or chromatin. When cells enter mitosis, membrane-chromatin contacts must be broken to allow for proper chromosome segregation; yet how this occurs remains ill-understood. Unexpectedly, we observed that an imbalance in the levels of the lamina-associated polypeptide 1 (LAP1), an activator of ER-resident Torsin AAA+-ATPases, causes a failure in membrane removal from mitotic chromatin, accompanied by chromosome segregation errors and changes in post-mitotic nuclear morphology. These defects are dependent on a hitherto unknown chromatin-binding region of LAP1 that we have delineated. LAP1-induced NE abnormalities are efficiently suppressed by expression of wild-type but not ATPase-deficient Torsins. Furthermore, a dominant-negative Torsin induces chromosome segregation defects in a LAP1-dependent manner. These results indicate that association of LAP1 with chromatin in the nucleus can be modulated by Torsins in the perinuclear space, shedding new light on the LAP1-Torsin interplay.


Assuntos
Cromatina/metabolismo , Segregação de Cromossomos/fisiologia , Proteínas de Choque Térmico HSC70/metabolismo , Mitose/fisiologia , Chaperonas Moleculares/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Células HCT116 , Proteínas de Choque Térmico HSC70/genética , Células HeLa , Células Hep G2 , Humanos , Chaperonas Moleculares/genética , Membrana Nuclear/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...