Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Sports Act Living ; 6: 1357199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38654753

RESUMO

Background: The proprioceptive system coordinates locomotion, but its role in short-term integration and recovery of motor activity in imbalance of motor patterns and body remains debated. The aim of this study is investigating the functional role of proprioceptive system in motor patterns and body balance in healthy young adults. Methods: 70 participants (aged 20.1 ± 0.3) were divided into experimental groups EG1 (n = 30), EG2 (n = 30), control group (CG, n = 10). EG1 performed single WBV session on Power Plate (7 exercises adapted to Functional Movement Screen (FMS). EG2 performed single session of FMS Exercises (FMSE). CG didn't perform any physical activity. All participants performed pre- and post-session of FMS and stabilometric measurements. Results: FMS total score in EG1 increased by 2.0 ± 0.2 (p0 < 0.001), this was significantly differed (p0 < 0.001) from EG2 and CG. Acute effects of WBV and FMSE on rate of change and standard deviation (SD) of pressure center (COP) were shown in all groups during Static Test (p0 < 0.01). SD increased (p0 < 0.01) in Given Setting Test in EG1 and EG2, and in Romberg Test (p0 < 0.001) in EG1. Length, width and area (p0 < 0.01) of confidence ellipse, containing 95% of the statokinesiogram points, decreased in Static Test in EG1; width and area (p0 < 0.01) decreased in EG2 group. Significant (p0 < 0.01) decrease in Given Setting Test was in EG1, and significant (p0 < 0.01) increase was in Romberg Test (open eyes) in CG. Maximum amplitude of COP oscillations: significantly (p0 < 0.01) decreasing along X and Y axes in EG1 and EG2, and along Y axis in CG during Static Test; along Y axis (p0 < 0.01) in all groups during Given Setting Test. Significant differences were identified (p0 < 0.01) in calculated energy consumption for COP moving during all stabilometric tests. However, inter-group differences in COP after acute WBV and FMSE sessions have not been identified. Conclusions: Acute WBV session eliminates the deficits in motor patterns which is not the case after acute FMSE session, which, according to our integrative movement tuning hypothesis, is due to high activation of integrative function of proprioceptive system. Efficacy of WBV and FMSE on COP performance indicates a high sensitivity of postural control to different levels of proprioceptive system activity.

2.
Chempluschem ; : e202400094, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659085

RESUMO

4-(trimethylsilyl)morpholine O(CH2CH2)2NSi(CH3)3 (TMSM) was investigated as a single-source precursor for SiCNO films synthesis. Optical emission spectroscopy of plasma generated from TMSM/He, TMSM/H2, and TMSM/NH3 gas mixtures revealed the presence of N2, CH, H, CN, and CO species. The last two are suggested to be responsible for the lowering of carbon concentration in the films in comparison with the precursor. The refractive index ranged from 1.5 to 2.0, and bandgap varied from 2.0 to 4.6 eV, which pointed that some of the films can be used as antireflective coatings in silicon photovoltaic cell technologies and dielectric layers in electronic devices.

3.
Microorganisms ; 12(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38543521

RESUMO

There is currently growing interest in the creation of artificial microbial consortia, especially in the field of developing and applying various bioremediation processes. Heavy metals, dyes, synthetic polymers (microplastics), pesticides, polycyclic aromatic hydrocarbons and pharmaceutical agents are among the pollutants that have been mainly targeted by bioremediation based on various consortia containing fungi (mycelial types and yeasts). Such consortia can be designed both for the treatment of soil and water. This review is aimed at analyzing the recent achievements in the research of the artificial microbial consortia that are useful for environmental and bioremediation technologies, where various fungal cells are applied. The main tendencies in the formation of certain microbial combinations, and preferences in their forms for usage (suspended or immobilized), are evaluated using current publications, and the place of genetically modified cells in artificial consortia with fungi is assessed. The effect of multicomponence of the artificial consortia containing various fungal cells is estimated, as well as the influence of this factor on the functioning efficiency of the consortia and the pollutant removal efficacy. The conclusions of the review can be useful for the development of new mixed microbial biocatalysts and eco-compatible remediation processes that implement fungal cells.

4.
Sensors (Basel) ; 24(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38339480

RESUMO

Interest in enzymes capable of neutralizing various mycotoxins is quite high. The methods used for the screening and selection of enzymes that catalyze the detoxification of mycotoxins should be sensitive and fast. However toxic compounds can be generated under the action of such enzymes. Thus, the assessment of the overall reduction in the toxic properties of reaction media towards bioluminescent bacteria seems to be the most reasonable control method allowing a quick search for the effective enzymatic biocatalysts. The influence of a wide range of mycotoxins and glucanases, which hydrolyze toxins with different chemical structures, on the analytical characteristics of luminescent photobacteria as a biosensing element has been studied. Different glucanases (ß-glucosidase and endoglucanase) were initially selected for reactions with 10 mycotoxins based on the results of molecular docking which was performed in silico with 20 mycotoxins. Finally, the biorecognizing luminescent cells were used to estimate the residual toxicity of reaction media with mycotoxins after their interaction with enzymes. The notable non-catalytic decrease in toxicity of media containing deoxynivalenol was revealed with luminous cells for both types of tested glucanases, whereas ß-glucosidase provided a significant catalytic detoxification of media with aflatoxin B2 and zearalenone at pH 6.0.


Assuntos
Celulases , Micotoxinas , Micotoxinas/análise , Biomarcadores Ambientais , Simulação de Acoplamento Molecular , Bactérias
5.
Biomimetics (Basel) ; 8(8)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38132553

RESUMO

Various processes designed for the humification (HF) of animal husbandry wastes, primarily bird droppings, reduce their volumes, solve environmental problems, and make it possible to obtain products with artificially formed humic substances (HSs) as analogues of natural HSs, usually extracted from fossil sources (coal and peat). This review studies the main characteristics of various biological and physicochemical methods of the HF of animal wastes (composting, anaerobic digestion, pyrolysis, hydrothermal carbonation, acid or alkaline hydrolysis, and subcritical water extraction). A comparative analysis of the HF rates and HS yields in these processes, the characteristics of the resulting artificial HSs (humification index, polymerization index, degree of aromaticity, etc.) was carried out. The main factors (additives, process conditions, waste pretreatment, etc.) that can increase the efficiency of HF and affect the properties of HSs are highlighted. Based on the results of chemical composition analysis, the main trends and preferences with regard to the use of HF products as complex biomimetics are discussed.

6.
Biomimetics (Basel) ; 8(7)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37999154

RESUMO

Biomimetics, which are similar to natural compounds that play an important role in the metabolism, manifestation of functional activity and reproduction of various fungi, have a pronounced attraction in the current search for new effective antifungals. Actual trends in the development of this area of research indicate that unnatural amino acids can be used as such biomimetics, including those containing halogen atoms; compounds similar to nitrogenous bases embedded in the nucleic acids synthesized by fungi; peptides imitating fungal analogs; molecules similar to natural substrates of numerous fungal enzymes and quorum-sensing signaling molecules of fungi and yeast, etc. Most parts of this review are devoted to the analysis of semi-synthetic and synthetic antifungal peptides and their targets of action. This review is aimed at combining and systematizing the current scientific information accumulating in this area of research, developing various antifungals with an assessment of the effectiveness of the created biomimetics and the possibility of combining them with other antimicrobial substances to reduce cell resistance and improve antifungal effects.

7.
Front Hum Neurosci ; 17: 1216648, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680264

RESUMO

The defeat of the central motor neuron leads to the motor disorders. Patients lose the ability to control voluntary muscles, for example, of the upper limbs, which introduces a fundamental dissonance in the possibility of daily use of a computer or smartphone. As a result, the patients lose the ability to communicate with other people. The article presents the most popular paradigms used in the brain-computer-interface speller system and designed for typing by people with severe forms of the movement disorders. Brain-computer interfaces (BCIs) have emerged as a promising technology for individuals with communication impairments. BCI-spellers are systems that enable users to spell words by selecting letters on a computer screen using their brain activity. There are three main types of BCI-spellers: P300, motor imagery (MI), and steady-state visual evoked potential (SSVEP). However, each type has its own limitations, which has led to the development of hybrid BCI-spellers that combine the strengths of multiple types. Hybrid BCI-spellers can improve accuracy and reduce the training period required for users to become proficient. Overall, hybrid BCI-spellers have the potential to improve communication for individuals with impairments by combining the strengths of multiple types of BCI-spellers. In conclusion, BCI-spellers are a promising technology for individuals with communication impairments. P300, MI, and SSVEP are the three main types of BCI-spellers, each with their own advantages and limitations. Further research is needed to improve the accuracy and usability of BCI-spellers and to explore their potential applications in other areas such as gaming and virtual reality.

8.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686323

RESUMO

A novel group of conjugative plasmids of Pseudomonas is characterized. The prototype plasmid pPPUT-Tik1-1 (153,663 bp), isolated from a permafrost strain of P. putida Tik1, carries a defective mercury transposon, Tn501, and a streptomycin resistance transposon, Tn5393. Ten plasmids and 34 contigs with backbone regions closely related to pPPUT-Tik1-1 have been found in GenBank. Two of these plasmids from clinical strains of P. putida and P. fulva are almost identical to the ancient plasmid. A characteristic feature of this group of plasmids is the presence of two genes encoding the initiators of replication (repA1 and repA2). None of these genes have high similarity with plasmid replication genes belonging to known incompatibility groups. It has been demonstrated that while pPPUT-Tik1-1-like plasmids have homologous backbone regions, they significantly differ by the molecular structure and the predicted functions of their accessory regions. Some of the pPPUT-Tik1-1-related plasmids carry determinants of antibiotic resistance and/or heavy metal salts. Some plasmids are characterized by the ability to degrade xenobiotics. Plasmids related to pPPUT-Tik1-1 are characterized by a narrow host range and are found in various species of the Pseudomonas genus. Interestingly, we also found shorter plasmid variants containing the same replication module, but lacking conjugation genes and containing other structural changes that strongly distinguish them from plasmids related to pPPUT-Tik1-1, indicating that the structure of the replication module cannot be used as the sole criterion for classifying plasmids. Overall, the results suggest that the plasmids of the novel group can be spread using conjugation in environmental and clinical strains of Pseudomonas and may play diverse adaptive functions due to the presence of various accessory regions.


Assuntos
Pergelissolo , Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas , Bases de Dados de Ácidos Nucleicos , Especificidade de Hospedeiro
9.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37511117

RESUMO

Active research of metal-containing compounds and enzymes as effective antifungal agents is currently being conducted due to the growing antifungal resistance problem. Metals are attracting special attention due to the wide variety of ligands that can be used for them, including chemically synthesized and naturally obtained variants as a result of the so-called "green synthesis". The main mechanism of the antifungal action of metals is the triggering of the generation and accumulation of reactive oxygen species (ROS). Further action of ROS on various biomolecules is nonspecific. Various hydrolytic enzymes (glucanases and proteases), in turn, exhibit antifungal properties by affecting the structural elements of fungal cells (cell walls, membranes), fungal quorum sensing molecules, fungal own protective agents (mycotoxins and antibiotics), and proteins responsible for the adhesion and formation of stable, highly concentrated populations in the form of biofilms. A wide substrate range of enzymes allows the use of various mechanisms of their antifungal actions. In this review, we discuss the prospects of combining two different types of antifungal agents (metals and enzymes) against mycelial fungi and yeast cells. Special attention is paid to the possible influence of metals on the activity of the enzymes and the possible effects of proteins on the antifungal activity of metal-containing compounds.


Assuntos
Antifúngicos , Percepção de Quorum , Antifúngicos/química , Espécies Reativas de Oxigênio/metabolismo , Biofilmes , Antibacterianos/farmacologia
10.
Front Sociol ; 8: 1143561, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260721

RESUMO

Purpose: This experimental study was conducted during the post-COVID-19 period to investigate the relationship between the quality of life 9 months after and the severity of the SARS-CoV-2 infection in two scenarios: hospitalization (with/without medical oxygen) and outpatient treatment. Methods: We employed the EQ-5D-5L Quality of Life tests and the PSQI as a survey to evaluate respondents' quality of life 9 months after a previous SARS-CoV-2 infection of varying severity. Results: We identified a clear difference in the quality of life of respondents, as measured on the 100-point scale of the EQ-5D-5L test, which was significantly lower 9 months after a previous SARS-CoV-2 infection for Group 1 (n = 14), respondents who had received medical attention for SARS-CoV-2 infection in a hospital with oxygen treatment, compared to those with the SARS-CoV-2 infection who were treated without oxygen treatment (Group 2) (n = 12) and those who were treated on an outpatient basis (Group 3) (n = 13) (H = 7.08 p = 0.029). There were no intergroup differences in quality of life indicators between hospitalized patients (Group 2) and groups 1 and 3. PSQI survey results showed that "mobility," "self-care," "daily activities," "pain/discomfort," and "anxiety/ depression" did not differ significantly between the groups, indicating that these factors were not associated with the severity of the SARS-CoV-2 infection. On the contrary, the respondents demonstrated significant inter-group differences (H = 7.51 p = 0.023) and the interdependence of respiratory difficulties with the severity of clinically diagnosed SARS-CoV-2 infection. This study also demonstrated significant differences in the values of sleep duration, sleep disorders, and daytime sleepiness indicators between the three groups of respondents, which indicate the influence of the severity of the infection. The PSQI test results revealed significant differences in "bedtime" (H = 6.00 p = 0.050) and "wake-up time" (H = 11.17 p = 0.004) between Groups 1 and 3 of respondents. At 9 months after COVID-19, respondents in Group 1 went to bed at a later time (pp = 0.02727) and woke up later (p = 0.003) than the respondents in Group 3. Conclusion: This study is the first of its kind in the current literature to report on the quality of life of respondents 9 months after being diagnosed with COVID-19 and to draw comparisons between cohorts of hospitalized patients who were treated with medical oxygen vs. the cohorts of outpatient patients. The study's findings regarding post-COVID-19 quality of life indicators and their correlation with the severity of the SARS-CoV-2 infection can be used to categorize patients for targeted post-COVID-19 rehabilitation programs.

11.
Microorganisms ; 11(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37374897

RESUMO

Quorum sensing (QS) of various microorganisms (bacteria, fungi, microalgae) today attracts the attention of researchers mainly from the point of view of clarifying the biochemical basics of this general biological phenomenon, establishing chemical compounds that regulate it, and studying the mechanisms of its realization. Such information is primarily aimed at its use in solving environmental problems and the development of effective antimicrobial agents. This review is oriented on other aspects of the application of such knowledge; in particular, it discusses the role of QS in the elaboration of various prospective biocatalytic systems for different biotechnological processes carried out under aerobic and anaerobic conditions (synthesis of enzymes, polysaccharides, organic acids, etc.). Particular attention is paid to the biotechnological aspects of QS application and the use of biocatalysts, which have a heterogeneous microbial composition. The priorities of how to trigger a quorum response in immobilized cells to maintain their long-term productive and stable metabolic functioning are also discussed. There are several approaches that can be realized: increase in cell concentration, introduction of inductors for synthesis of QS-molecules, addition of QS-molecules, and provoking competition between the participants of heterogeneous biocatalysts, etc.).

12.
Life (Basel) ; 13(3)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36983996

RESUMO

The review focuses on the appearance of various pharmaceutical pollutants in various water sources, which dictates the need to use various methods for effective purification and biodegradation of the compounds. The use of various biological catalysts (enzymes and cells) is discussed as one of the progressive approaches to solving problems in this area. Antibiotics, hormones, pharmaceuticals containing halogen, nonsteroidal anti-inflammatory drugs, analgesics and antiepileptic drugs are among the substrates for the biocatalysts in water purification processes that can be carried out. The use of enzymes in soluble and immobilized forms as effective biocatalysts for the biodegradation of various pharmaceutical compounds (PCPs) has been analyzed. Various living cells (bacteria, fungi, microalgae) taken as separate cultures or components of natural or artificial consortia can be involved in biocatalytic processes under aerobic or anaerobic conditions. Cells as biocatalysts introduced into water treatment systems in suspended or immobilized form are used for deep biodegradation of PCPs. The potential of combinations of biocatalysts with physical-chemical methods of wastewater treatment is evaluated in relation to the effective removing of PCPs. The review analyzes recent results and the main current trends in the development of biocatalytic approaches to biodegradation of PCPs, the pros and cons of the processes and the biocatalysts used.

13.
Toxins (Basel) ; 15(3)2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36977096

RESUMO

To reduce the toxicity of modern feeds polluted by mycotoxins, various sorbents are added to them when feeding animals. A part of the mycotoxins is excreted from the body of animals with these sorbents and remains in the manure. As a result, bulk animal wastes containing mixtures of mycotoxins are formed. It is known that it is partially possible to decrease the initial concentration of mycotoxins in the process of anaerobic digestion (AD) of contaminated methanogenic substrates. The aim of this review was to analyze the recent results in destruction of mycotoxins under the action of enzymes present in cells of anaerobic consortia catalyzing methanogenesis of wastes. The possible improvement of the functioning of the anaerobic artificial consortia during detoxification of mycotoxins in the bird droppings is discussed. Particular attention was paid to the possibility of effective functioning of microbial enzymes that catalyze the detoxification of mycotoxins, both at the stage of preparation of poultry manure for methanogenesis and directly in the anaerobic process itself. The sorbents with mycotoxins which appeared in the poultry wastes composed one of the topics of interest in this review. The preliminary alkaline treatment of poultry excreta before processing in AD was considered from the standpoint of effectively reducing the concentrations of mycotoxins in the waste.


Assuntos
Micotoxinas , Aves Domésticas , Animais , Anaerobiose , Esterco , Consórcios Microbianos , Reatores Biológicos
14.
Polymers (Basel) ; 15(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36771892

RESUMO

Organophosphorus hydrolase, containing a genetically introduced hexahistidine sequence (His6-OPH), attracts the attention of researchers by its promiscuous activity in hydrolytic reactions with various substrates, such as organophosphorus pesticides and chemical warfare agents, mycotoxins, and N-acyl homoserine lactones. The application of various carrier materials (metal-organic frameworks, polypeptides, bacterial cellulose, polyhydroxybutyrate, succinylated gelatin, etc.) for the immobilization and stabilization of His6-OPH by various methods, enables creation of biocatalysts with various properties and potential uses, in particular, as antidotes, recognition elements of biosensors, in fibers with chemical and biological protection, dressings with antimicrobial properties, highly porous sorbents for the degradation of toxicants, including in flow systems, etc. The use of computer modeling methods in the development of immobilized His6-OPH samples provides in silico prediction of emerging interactions between the enzyme and immobilizing polymer, which may have negative effects on the catalytic properties of the enzyme, and selection of the best options for experiments in vitro and in vivo. This review is aimed at analysis of known developments with immobilized His6-OPH, which allows to recognize existing recent trends in this field of research, as well as to identify the reasons limiting the use of a number of polymer molecules for the immobilization of this enzyme.

15.
J Funct Biomater ; 14(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36826863

RESUMO

Multidrug-resistant bacteria form serious problems in many areas, including medicine and the food industry. At the same time, great interest is shown in the transfer or enhancement of antimicrobial properties to various materials by modifying them with enzymes. The use of enzymes in biomaterials with antimicrobial properties is important because enzymes can be used as the main active components providing antimicrobial properties of functionalized composite biomaterials, or can serve as enhancers of the antimicrobial action of certain substances (antibiotics, antimicrobial peptides, metal nanoparticles, etc.) against cells of various microorganisms. Enzymes can simultaneously widen the spectrum of antimicrobial activity of biomaterials. This review presents the most promising enzymes recently used for the production of antibacterial materials, namely hydrolases and oxidoreductases. Computer modeling plays an important role in finding the most effective combinations between enzymes and antimicrobial compounds, revealing their possible interactions. The range of materials that can be functionalized using enzymes looks diverse. The physicochemical characteristics and functionalization methods of the materials have a significant impact on the activity of enzymes. In this context, fibrous materials are of particular interest. The purpose of this review is to analyze the current state of the art in this area.

16.
Open Access Maced J Med Sci ; 11(B): 412-420, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173466

RESUMO

BACKGROUND: At present, more than 8000 sesquiterpene lactones have been isolated and described from natural sources, a significant part of which has cytotoxicity and antitumor activity. One of the practically available sesquiterpene lactones is arglabin, which, as a renewable material, is used for the synthesis of new compounds. The article presents data on the study of cytotoxicity and antitumor activity of the arglabin and its derivatives using molecular modeling methods and, in the experiment in vitro and in vivo. AIM: The aim of this work is to study the cytotoxicity and antitumor activity of new compounds based on the sesquiterpene lactone arglabin using molecular modeling and experimental pharmacology. METHODS: ChemDraw programs and a set of AutoDock programs were used for computer simulation. Molecular docking was carried out using the Maestro graphical interface of the Schrödinger Suite software package (Schrödinger, LLC, New York, NY, 2017). Docking modes standard precision and XP (extra precision) were used. In in vitro experiments, the antitumor activity of compound samples was studied in models of 60 human tumor cell lines, and clonogenic C6 rat glioma cells. The antitumor activity of the samples was studied in experiments in vivo on white outbred rats with transplanted tumors and was evaluated by the inhibition of tumor growth and the magnitude of the increase in average life expectancy. CONCLUSION: When studying the antitumor activity on 60 cell lines of tumor cells (NCI60), clonogenic cells of C6 rat glioma, a high antitumor activity of some arglabin derivatives was established. The connection between the structure of arglabin derivatives and their inhibitory effect on farnesyl protein transferase, topoisomerases -I and -II was studied.

17.
Appl Microbiol Biotechnol ; 106(19-20): 6833-6845, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36104543

RESUMO

Combinations of various strategic approaches to the suppression of methanogenesis and the formation of biogas with a simultaneous decrease in the ratio of methane in its composition were investigated. Introduction of methanogenesis suppressors such as redox derivatives of humic acids, potassium persulfate (K2S2O8), possessing oxidizing and electron acceptor properties, enzyme hexahistidine-containing organophosphorus hydrolase with high lactonase activity and polypeptide antimicrobial agent bacitracin into the media with anaerobic consortia were studied. The effect of these substances was directed at various participants of the natural methanogenic consortium, as well as on the biochemical processes carried out by them. The use of K2S2O8 together with bacitracin provided maximum and almost complete suppression of CH4 production. The measured concentration of intracellular adenosine triphosphate has shown that viability of cells in the consortium remained almost the same, whereas their metabolic activity decreased. Various combinations of the above-mentioned suppressors provided different degrees of methanogenesis suppression, but redox agents played a key role in all the cases studied. Based on the accumulated data, combining suppressors in different concentrations can be used to manage the methanogenesis (efficiency and velocity of its decrease) in media with anaerobic consortia. KEY POINTS: • Various strategies for suppression of the methanogenesis were combined. • The enzyme His6-OPH was firstly used for quorum quenching in methanogenic consortium. • Velocity of methanogenesis decrease can be managed by combinations of suppressors.


Assuntos
Biocombustíveis , Substâncias Húmicas , Trifosfato de Adenosina , Arildialquilfosfatase , Bacitracina , Humanos , Metano/metabolismo
18.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36142804

RESUMO

This review briefly summarizes the data on the mechanisms of development of the adaptability of Acinetobacters to various living conditions in the environment and in the clinic. A comparative analysis of the genomes of free-living and clinical strains of A. lwoffii, as well as the genomes of A. lwoffii and A. baumannii, has been carried out. It has been shown that plasmids, both large and small, play a key role in the formation of the adaptability of Acinetobacter to their living conditions. In particular, it has been demonstrated that the plasmids of various strains of Acinetobacter differ from each other in their structure and gene composition depending on the lifestyle of their host bacteria. Plasmids of modern strains are enriched with antibiotic-resistant genes, while the content of genes involved in resistance to heavy metals and arsenic is comparable to plasmids from modern and ancient strains. It is concluded that Acinetobacter plasmids may ensure the survival of host bacteria under conditions of various types of environmental and clinical stresses. A brief overview of the main mechanisms of horizontal gene transfer on plasmids inherent in Acinetobacter strains is also given.


Assuntos
Acinetobacter baumannii , Acinetobacter , Arsênio , Metais Pesados , Acinetobacter/genética , Acinetobacter baumannii/genética , Antibacterianos , Plasmídeos/genética
19.
Bioresour Technol ; 362: 127794, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35987436

RESUMO

Methanogenic biotransformation of unusual substrates (sulfur (S)-containing wastes: non-purified vacuum gas oil, straight-run gasoline fraction (Naphtha), gas condensate, and straight-run diesel fraction) coming from oil industry after their oxidative desulfurization was investigated. Nitrogen-containing wastes (hydrolysates of chicken manure and Chlorella vulgaris biomass) were added as co-substrates to mixture with oil industry wastes. The 100 % conversion of S-organic compounds to inorganic sulfide accumulated in the reaction liquid medium was achieved with simultaneous production of biogas containing high methane percent (greater than 70 %). Polishing of effluents from methane tank was carried out by denitrifying oxidation of ammonium (DEAMOX). The high process efficiency was due to use of original immobilized artificial consortia at the stage of methanogenesis and DEAMOX. This study reveals the real potential in the processing of very complex mixtures of large-scale wastes, usually inhibiting methanogenesis, by developing biocatalysts based on synthetic biology approaches.


Assuntos
Chlorella vulgaris , Anaerobiose , Biocombustíveis , Reatores Biológicos , Chlorella vulgaris/metabolismo , Metano , Enxofre
20.
Microorganisms ; 10(7)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35889114

RESUMO

This work was aimed at the development of an immobilized artificial consortium (IMAC) based on microorganisms belonging to the Gram-positive and Gram-negative bacterial cells capable of jointly carrying out the rapid and effective degradation of different organophosphorus pesticides (OPPs): paraoxon, parathion, methyl parathion, diazinon, chlorpyrifos, malathion, dimethoate, and demeton-S-methyl. A cryogel of poly(vinyl alcohol) was applied as a carrier for the IMAC. After a selection was made between several candidates of the genera Rhodococcus and Pseudomonas, the required combination of two cultures (P. esterophilus and R. ruber) was found. A further change in the ratio between the biomass of the cells inside the granules of IMAC, increasing the packing density of cells inside the same granules and decreasing the size of the granules with IMAC, gave a 225% improvement in the degradation activity of the cell combination. The increase in the velocity and the OPP degradation degree was 4.5 and 16 times greater than the individual P. esterophilus and R. ruber cells, respectively. Multiple uses of the obtained IMAC were demonstrated. The increase in IMAC lactonase activity confirmed the role of the cell quorum in the action efficiency of the synthetic biosystem. The co-inclusion of natural strains in a carrier during immobilization strengthened the IMAC activities without the genetic enhancement of the cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...