Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 2377, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149716

RESUMO

Cavity ring-down spectroscopy is a ubiquitous optical method used to study light-matter interactions with high resolution, sensitivity and accuracy. However, it has never been performed with the multiplexing advantages of direct frequency comb spectroscopy without significantly compromising spectral resolution. We present dual-comb cavity ring-down spectroscopy (DC-CRDS) based on the parallel heterodyne detection of ring-down signals with a local oscillator comb to yield absorption and dispersion spectra. These spectra are obtained from widths and positions of cavity modes. We present two approaches which leverage the dynamic cavity response to coherently or randomly driven changes in the amplitude or frequency of the probe field. Both techniques yield accurate spectra of methane-an important greenhouse gas and breath biomarker. When combined with broadband frequency combs, the high sensitivity, spectral resolution and accuracy of our DC-CRDS technique shows promise for applications like studies of the structure and dynamics of large molecules, multispecies trace gas detection and isotopic composition.

2.
Opt Express ; 29(24): 39449-39460, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809309

RESUMO

Frequency-based cavity mode-dispersion spectroscopy (CMDS), previously applied for Doppler-limited molecular spectroscopy, is now employed for the first time for saturation spectroscopy. Comparison with two intensity-based, cavity-enhanced absorption spectroscopy techniques, i.e. cavity mode-width spectroscopy (CMWS) and the well-established cavity ring-down spectroscopy (CRDS), shows the predominance of the CMDS. The method enables measurements in broader pressure range and shows high immunity of the Lamb dip position to the incomplete model of saturated cavity mode shape. Frequencies of transitions from the second overtone of CO are determined with standard uncertainty below 500 Hz which corresponds to relative uncertainty below 3 × 10-12. The pressure shift of the Lamb dips, which has not been detected for these transitions in available literature data, is observed.

3.
Opt Lett ; 45(7): 1603-1606, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32235953

RESUMO

We report the most accurate, to the best of our knowledge, measurement of the position of the weak quadrupole S(2) 2-0 line in $ {{\rm D}_2} $D2. The spectra were collected with a frequency-stabilized cavity ringdown spectrometer (FS-CRDS) with an ultrahigh finesse optical cavity ($ {\cal F} = 637 000 $F=637000) and operating in the frequency-agile, rapid scanning spectroscopy (FARS) mode. Despite working in the Doppler-limited regime, we reached 40 kHz of statistical uncertainty and 161 kHz of absolute accuracy, achieving the highest accuracy for homonuclear isotopologues of molecular hydrogen. The accuracy of our measurement corresponds to the fifth significant digit of the leading term in quantum electrodynamics (QED) correction. We observe $ 2.3\sigma $2.3σ discrepancy with the recent theoretical value.

4.
Opt Lett ; 45(7): 1914-1917, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32236031

RESUMO

We experimentally demonstrate in a difference-frequency generation mid-infrared frequency comb source the effect of temporal overlap between pump and signal pulses on the relative intensity noise (RIN) of the idler pulse. When scanning the temporal delay between our 130 fs long signal and pump pulses, we observe a RIN minimum with a 3 dB width of 20 fs delay and a RIN increase of 20 dB in 40 fs delay at the edges of this minimum. We also demonstrate active long-term stabilization of the mid-infrared frequency comb source to the temporal overlap setting corresponding to the lowest RIN operation point by an online RIN detector and active feedback control of the pump-signal pulse delay. This active stabilization setup allows us to dramatically increase the signal-to-noise ratio of mid-infrared absorption spectra.

5.
Opt Express ; 27(15): 21810-21821, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31510251

RESUMO

A spectroscopic method free from systematic errors is desired for many challenging applications of gas detection. Although existing cavity-enhanced techniques exhibit very high precision, their accuracy strongly depends on propagation of the light amplitude through an optical system and its detection. Here, we demonstrate that the frequency-based molecular dispersion spectroscopy, involving sub-Hz-level precision in frequency measurements of optical cavity resonances, leads to sub-per-mille accuracy and a wide dynamic range, both previously unattainable by any other spectroscopic technique. The method offers great sensitivity of 5×10-11 cm-1, high speed, limited only by the fundamental response time of the cavity, and traceability of both axes of the spectrum to the primary frequency standard. All these features are necessary for convenient realization of comprehensive molecular spectroscopy from Doppler up to collisional regime without changing the spectroscopic method and modification of the experimental setup. Moreover, the presented approach does not require linear, high-bandwidth nor phase-sensitive detectors and can be directly implemented in existing cavity-enhanced spectrometers utilizing either continuous-wave or coherent broadband radiation. We experimentally prove the predominance of frequency-based spectroscopy over intensity-based one. Our results motivate replacement of intensity-based absorption spectroscopy with a pure frequency-based dispersion one in applications where the highest accuracy is required.

6.
Sci Rep ; 9(1): 8206, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160670

RESUMO

Optical frequency comb spectrometers open up new avenues of investigation into molecular structure and dynamics thanks to their accuracy, sensitivity and broadband, high-speed operation. We combine broadband direct frequency comb spectroscopy with a dispersive spectrometer providing single-spectrum acquisition time of a few tens of milliseconds and high spectral resolution. We interleave a few tens of such comb-resolved spectra to obtain profiles of 14-kHz wide cavity resonances and determine their positions with precision of a few hertz. To the best of our knowledge, these are the most precise and highest resolution spectral measurements performed with a broadband spectrometer, either comb-based or non-comb-based. This result pushes the limits of broadband comb-based spectroscopy to Hz-level regime. As a demonstration of these capabilities, we perform simultaneous cavity-enhanced measurements of molecular absorption and dispersion, deriving the gas spectra from cavity mode widths and positions. Such approach is particularly important for gas metrology and was made possible by the Hz-level resolution of the system. The presented method should be especially applicable to monitoring of chemical kinetics in, for example, plasma discharges or measurements of narrow resonances in cold atoms and molecules.

7.
Opt Express ; 27(8): 11069-11083, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31052957

RESUMO

We report the measurement of the absolute frequencies of the 6s2 1S0-6s6p 3P1 transition (253.7 nm) and the relevant isotope shifts in five mercury isotopes  198Hg,  199Hg,  200Hg,  202Hg, and  204Hg. The Doppler-free saturated absorption measurements were performed in an atomic vapour cell at room temperature with a four-harmonic generated (FHG) continuous-wave (cw) laser digitally locked to the atomic transition. It was referenced with a femtosecond optical frequency comb synchronized to the frequency of local representation of the International Atomic Time to provide traceability to the SI second by the 330 km-long stabilized fibre optical link. The transition frequencies and isotope shifts have been determined with an accuracy of a few hundred kHz, at least one order of magnitude better than any previous measurement. By making a King plot with the isotope shifts of 6s6p 3P2-6s7s 3S1 transition (546 nm) we determined the accurate value of the ratio of the electronic field-shift parameters E546/E254 and estimated the electronic field-shift term E254.

8.
Opt Express ; 26(5): 5644-5654, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529766

RESUMO

The response of an optical cavity to incomplete extinction of nearly resonant incident light was experimentally examined. Measurements were performed using a Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectrometer (CRDS) that allowed the laser frequency detuning from the cavity resonance center to be controlled at Hz-level resolution. It is shown that an insufficient laser light extinction ratio combined with a phase shift and frequency detuning may lead to non-exponential cavity pumping and decay signals. The experimental results can be explained with a simple analytical model. The non-exponential decay can lead to a systematic shift as high as 0.5% in the ring-down time constants, dependent on the laser frequency detuning from the cavity mode center and on the extinction ratio. This can lead to appreciable systematic errors in the absorption coefficients determined with the CRDS technique.

9.
J Chem Phys ; 147(13): 134201, 2017 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-28987101

RESUMO

We propose a novel approach to cavity-ring-down-spectroscopy (CRDS) in which spectra acquired with a frequency-agile rapid-scanning (FARS) scheme, i.e., with a laser sideband stepped across the modes of a high-finesse cavity, are interleaved with one another by a sub-millisecond readjustment of the cavity length. This brings to time acquisitions below 20 s for few-GHz-wide spectra composed of a very high number of spectral points, typically 3200. Thanks to the signal-to-noise ratio easily in excess of 10 000, each FARS-CRDS spectrum is shown to be sufficient to determine the line-centre frequency of a Doppler broadened line with a precision of 2 parts over 1011, thus very close to that of sub-Doppler regimes and in a few-seconds time scale. The referencing of the probe laser to a frequency comb provides absolute accuracy and long-term reproducibility to the spectrometer and makes it a powerful tool for precision spectroscopy and line-shape analysis. The experimental approach is discussed in detail together with experimental precision and accuracy tests on the (30 012) ← (00 001) P12e line of CO2 at ∼1.57 µm.

10.
Opt Lett ; 41(5): 974-7, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26974094

RESUMO

We present a cavity-enhanced direct optical frequency comb spectroscopy system with a virtually imaged phased array (VIPA) spectrometer and either a dither or a Pound-Drever-Hall (PDH) locking scheme used for stable transmission of the comb through the cavity. A self-referenced scheme for frequency axis calibration is shown along with an analysis of its accuracy. A careful comparison between both locking schemes is performed based on near-IR measurements of the carbon monoxide ν=3←0 band P branch transitions in a gas sample with known composition. The noise-equivalent absorptions (NEA) for the PDH and dither schemes are 9.9×10(-10) cm(-1) and 5.3×10(-9) cm(-1), respectively.

11.
Sci Rep ; 5: 17495, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26639347

RESUMO

We report a stability below 7 × 10(-17) of two independent optical lattice clocks operating with bosonic (88)Sr isotope. The value (429 228 066 418 008.3(1.9)(syst) (0.9)(stat) Hz) of the absolute frequency of the (1)S(0) - (3)P(0) transition was measured with an optical frequency comb referenced to the local representation of the UTC by the 330 km-long stabilized fibre optical link. The result was verified by series of measurements on two independent optical lattice clocks and agrees with recommendation of Bureau International des Poids et Mesures.

12.
Opt Express ; 23(11): 14472-86, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26072808

RESUMO

Recent developments in optical metrology have tremendously improved the precision and accuracy of the horizontal (frequency) axis in measured spectra. However, the vertical (typically absorbance) axis is usually based on intensity measurements that are subject to instrumental errors which limit the spectrum accuracy. Here we report a one-dimensional spectroscopy that uses only the measured frequencies of high-finesse cavity modes to provide complete information about the dispersive properties of the spectrum. Because this technique depends solely on the measurement of frequencies or their differences, it is insensitive to systematic errors in the detection of light intensity and has the potential to become the most accurate of all absorptive and dispersive spectroscopic methods. The experimental results are compared to measurements by two other high-precision cavity-enhanced spectroscopy methods. We expect that the proposed technique will have significant impact in fields such as fundamental physics, gas metrology and environmental remote sensing.

13.
Opt Lett ; 38(22): 4581-4, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24322079

RESUMO

We report the absolute frequency measurements of rubidium 5S-7S two-photon transitions with a cw laser digitally locked to an atomic transition and referenced to an optical frequency comb. The narrow, two-photon transition, 5S-7S (760 nm), insensitive to first-order in a magnetic field, is a promising candidate for frequency reference. The performed tests yielded more accurate transition frequencies than previously reported.

14.
Phys Rev Lett ; 107(23): 233002, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22182084

RESUMO

We achieve a quantum-noise-limited absorption sensitivity of 1.7×10(-12) cm(-1) per spectral element at 400 s of acquisition time with cavity-enhanced frequency comb spectroscopy, the highest demonstrated for a comb-based technique. The system comprises a frequency comb locked to a high-finesse cavity and a fast-scanning Fourier transform spectrometer with an ultralow-noise autobalancing detector. Spectra with a signal-to-noise ratio above 1000 and a resolution of 380 MHz are acquired within a few seconds. The measured absorption line shapes are in excellent agreement with theoretical predictions.

15.
Opt Express ; 18(21): 21861-72, 2010 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-20941086

RESUMO

We present a first implementation of optical-frequency-comb-based rapid trace gas detection in the molecular fingerprint region in the mid-infrared. Near-real-time acquisition of broadband absorption spectra with 0.0056 cm(-1) maximum resolution is demonstrated using a frequency comb Fourier transform spectrometer which operates in the 2100-to-3700-cm(-1) spectral region. We achieve part-per-billion detection limits in 30 seconds of integration time for several important molecules including methane, ethane, isoprene, and nitrous oxide. Our system enables precise concentration measurements even in gas mixtures that exhibit continuous absorption bands, and it allows detection of molecules at levels below the noise floor via simultaneous analysis of multiple spectral features.


Assuntos
Óptica e Fotônica , Espectrofotometria Infravermelho/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Biomarcadores/metabolismo , Butadienos/química , Desenho de Equipamento , Etano/química , Hemiterpenos/química , Humanos , Metano/química , Modelos Estatísticos , Óxido Nitroso/química , Pentanos/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...