Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 1628, 2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36710295

RESUMO

Opsins, light-sensitive G protein-coupled receptors, have been identified in corals but their properties are largely unknown. Here, we identified six opsin genes (acropsins 1-6) from a coral species Acropora millepora, including three novel opsins (acropsins 4-6), and successfully characterized the properties of four out of the six acropsins. Acropsins 1 and 6 exhibited light-dependent cAMP increases in cultured cells, suggesting that the acropsins could light-dependently activate Gs-type G protein like the box jellyfish opsin from the same opsin group. Spectral sensitivity curves having the maximum sensitivities at ~ 472 nm and ~ 476 nm were estimated for acropsins 1 and 6, respectively, based on the light wavelength-dependent cAMP increases in these opsins-expressing cells (heterologous action spectroscopy). Acropsin 2 belonging to the same group as acropsins 1 and 6 did not induce light-dependent cAMP or Ca2+ changes. We then successfully estimated the acropsin 2 spectral sensitivity curve having its maximum value at ~ 471 nm with its chimera mutant which possessed the third cytoplasmic loop of the Gs-coupled jellyfish opsin. Acropsin 4 categorized as another group light-dependently induced intracellular Ca2+ increases but not cAMP changes. Our results uncovered that the Acropora coral possesses multiple opsins coupling two distinct cascades, cyclic nucleotide and Ca2+signaling light-dependently.


Assuntos
Antozoários , Opsinas , Animais , Opsinas/metabolismo , Antozoários/genética , Antozoários/metabolismo , Opsinas de Bastonetes/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Transdução de Sinais , Filogenia
2.
Nature ; 531(7594): 362-5, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26909578

RESUMO

Approximately one-quarter of the anthropogenic carbon dioxide released into the atmosphere each year is absorbed by the global oceans, causing measurable declines in surface ocean pH, carbonate ion concentration ([CO3(2-)]), and saturation state of carbonate minerals (Ω). This process, referred to as ocean acidification, represents a major threat to marine ecosystems, in particular marine calcifiers such as oysters, crabs, and corals. Laboratory and field studies have shown that calcification rates of many organisms decrease with declining pH, [CO3(2-)], and Ω. Coral reefs are widely regarded as one of the most vulnerable marine ecosystems to ocean acidification, in part because the very architecture of the ecosystem is reliant on carbonate-secreting organisms. Acidification-induced reductions in calcification are projected to shift coral reefs from a state of net accretion to one of net dissolution this century. While retrospective studies show large-scale declines in coral, and community, calcification over recent decades, determining the contribution of ocean acidification to these changes is difficult, if not impossible, owing to the confounding effects of other environmental factors such as temperature. Here we quantify the net calcification response of a coral reef flat to alkalinity enrichment, and show that, when ocean chemistry is restored closer to pre-industrial conditions, net community calcification increases. In providing results from the first seawater chemistry manipulation experiment of a natural coral reef community, we provide evidence that net community calcification is depressed compared with values expected for pre-industrial conditions, indicating that ocean acidification may already be impairing coral reef growth.


Assuntos
Antozoários/metabolismo , Calcificação Fisiológica , Recifes de Corais , Água do Mar/química , Animais , Antozoários/química , Carbonato de Cálcio/metabolismo , Ciclo do Carbono , Corantes , Concentração de Íons de Hidrogênio , Oceanos e Mares , Temperatura
3.
BMC Genomics ; 17: 62, 2016 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-26772977

RESUMO

BACKGROUND: Apoptotic cell death is a defining and ubiquitous characteristic of metazoans, but its evolutionary origins are unclear. Although Caenorhabditis and Drosophila played key roles in establishing the molecular bases of apoptosis, it is now clear that cell death pathways of these animals do not reflect ancestral characteristics. Conversely, recent work suggests that the apoptotic networks of cnidarians may be complex and vertebrate-like, hence characterization of the apoptotic complement of representatives of the basal cnidarian class Anthozoa will help us to understand the evolution of the vertebrate apoptotic network. RESULTS: We describe the Bcl-2 and caspase protein repertoires of the coral Acropora millepora, making use of the comprehensive transcriptomic data available for this species. Molecular phylogenetics indicates that some Acropora proteins are orthologs of specific mammalian pro-apoptotic Bcl-2 family members, but the relationships of other Bcl-2 and caspases are unclear. The pro- or anti-apoptotic activities of coral Bcl-2 proteins were investigated by expression in mammalian cells, and the results imply functional conservation of the effector/anti-apoptotic machinery despite limited sequence conservation in the anti-apoptotic Bcl-2 proteins. A novel caspase type ("Caspase-X"), containing both inactive and active caspase domains, was identified in Acropora and appears to be restricted to corals. When expressed in mammalian cells, full-length caspase-X caused loss of viability, and a truncated version containing only the active domain was more effective in inducing cell death, suggesting that the inactive domain might modulate activity in the full-length protein. Structure prediction suggests that the active and inactive caspase domains in caspase-X are likely to interact, resulting in a structure resembling that of the active domain in procaspase-8 and the inactive caspase domain in the mammalian c-FLIP anti-apoptotic factor. CONCLUSIONS: The data presented here confirm that many of the basic mechanisms involved in both the intrinsic and extrinsic apoptotic pathways were in place in the common ancestor of cnidarians and bilaterians. With the identification of most or all of the repertoires of coral Bcl-2 and caspases, our results not only provide new perspectives on the evolution of apoptotic pathways, but also a framework for future experimental studies towards a complete understanding of coral bleaching mechanisms, in which apoptotic cell death might be involved.


Assuntos
Apoptose/genética , Caspase 8/genética , Evolução Molecular , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sequência de Aminoácidos/genética , Animais , Antozoários/genética , Sequência Conservada/genética , Drosophila/genética , Filogenia
4.
Biol Bull ; 222(2): 88-92, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22589399

RESUMO

Light influences the swimming behavior and settlement of the planktonic planula larvae of coral, but little is known regarding the photosensory biology of coral at this or any life-history stage. Here we used changes in the electrical activity of coral planula tissue upon light flashes to investigate the photosensitivity of the larvae. Recordings were made from five species: two whose larvae are brooded and contain algal symbionts (Porites astreoides and Agaricia agaricites), and three whose larvae are spawned and lack algal symbionts (Acropora cervicornis, Acropora palmata,and Montastrea faveolata). Photosensitivity originated from the coral larva rather than from, or in addition to, its algal symbionts as species with and without symbionts displayed similar tissue-level electrical responses to light. All species exhibited as much (or more) sensitivity to red stimuli as to blue/green stimuli, which is consistent with a role for long-wavelength visible light in the preference for substrata observed during settlement and in facilitating vertical positioning of larvae in the water column.


Assuntos
Antozoários/fisiologia , Antozoários/efeitos da radiação , Luz , Animais , Cor , Fenômenos Eletrofisiológicos/efeitos da radiação , Eucariotos , Larva/crescimento & desenvolvimento , Larva/efeitos da radiação , Estimulação Luminosa , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA