Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 17(7): e3000380, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31299043

RESUMO

Larval dispersal is a critically important yet enigmatic process in marine ecology, evolution, and conservation. Determining the distance and direction that tiny larvae travel in the open ocean continues to be a challenge. Our current understanding of larval dispersal patterns at management-relevant scales is principally and separately informed by genetic parentage data and biological-oceanographic (biophysical) models. Parentage datasets provide clear evidence of individual larval dispersal events, but their findings are spatially and temporally limited. Biophysical models offer a more complete picture of dispersal patterns at regional scales but are of uncertain accuracy. Here, we develop statistical techniques that integrate these two important sources of information on larval dispersal. We then apply these methods to an extensive genetic parentage dataset to successfully validate a high-resolution biophysical model for the economically important reef fish species Plectropomus maculatus in the southern Great Barrier Reef. Our results demonstrate that biophysical models can provide accurate descriptions of larval dispersal at spatial and temporal scales that are relevant to management. They also show that genetic parentage datasets provide enough statistical power to exclude poor biophysical models. Biophysical models that included species-specific larval behaviour provided markedly better fits to the parentage data than assuming passive behaviour, but incorrect behavioural assumptions led to worse predictions than ignoring behaviour altogether. Our approach capitalises on the complementary strengths of genetic parentage datasets and high-resolution biophysical models to produce an accurate picture of larval dispersal patterns at regional scales. The results provide essential empirical support for the use of accurately parameterised biophysical larval dispersal models in marine spatial planning and management.


Assuntos
Distribuição Animal/fisiologia , Conservação dos Recursos Naturais/métodos , Recifes de Corais , Ecossistema , Modelos Biológicos , Animais , Peixes/fisiologia , Geografia , Larva/fisiologia , Biologia Marinha/métodos , Oceanos e Mares , Perciformes/fisiologia , Dinâmica Populacional , Reprodutibilidade dos Testes
3.
Proc Biol Sci ; 269(1505): 2079-86, 2002 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-12396481

RESUMO

An improved understanding of the dispersal patterns of marine organisms is a prerequisite for successful marine resource management. For species with dispersing larvae, regional-scale hydrodynamic models provide a means of obtaining results over relevant spatial and temporal scales. In an effort to better understand the role of the physical environment in dispersal, we simulated the transport of reef fish larvae among 321 reefs in and around the Cairns Section of the Great Barrier Reef Marine Park over a period of 20 years. Based on regional-scale hydrodynamics, our models predict the spatial and temporal frequency of significant self-recruitment of the larvae of certain species. Furthermore, the results suggest the importance of a select few local populations in ensuring the persistence of reef fish metapopulations over regional scales.


Assuntos
Ecossistema , Modelos Biológicos , Perciformes/fisiologia , Animais , Meio Ambiente , Feminino , Geografia , Larva/fisiologia , Masculino , Oceanos e Mares , Perciformes/crescimento & desenvolvimento , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...