Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1840(2): 722-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23644035

RESUMO

BACKGROUND: Immuno-spin trapping (IST) is based on the reaction of a spin trap with a free radical to form a stable nitrone adduct, followed by the use of antibodies, rather than traditional electron paramagnetic resonance spectroscopy, to detect the nitrone adduct. IST has been successfully applied to mechanistic in vitro studies, and recently, macromolecule-centered radicals have been detected in models of drug-induced agranulocytosis, hepatotoxicity, cardiotoxicity, and ischemia/reperfusion, as well as in models of neurological, metabolic and immunological diseases. SCOPE OF THE REVIEW: To critically evaluate advances, challenges, and pitfalls as well as the scientific opportunities of IST as applied to the study of protein-centered free radicals generated in stressed organelles, cells, tissues and animal models of disease and exposure. MAJOR CONCLUSIONS: Because the spin trap has to be present at high enough concentrations in the microenvironment where the radical is formed, the possible effects of the spin trap on gene expression, metabolism and cell physiology have to be considered in the use of IST and in the interpretation of results. These factors have not yet been thoroughly dealt with in the literature. GENERAL SIGNIFICANCE: The identification of radicalized proteins during cell/tissue response to stressors will help define their role in the complex cellular response to stressors and pathogenesis; however, the fidelity of spin trapping/immuno-detection and the effects of the spin trap on the biological system should be considered. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.


Assuntos
Radicais Livres/análise , Imunoglobulina G/imunologia , Óxidos de Nitrogênio/química , Proteínas/imunologia , Detecção de Spin/métodos , Animais , Bioquímica , Radicais Livres/isolamento & purificação , Humanos , Óxidos de Nitrogênio/imunologia
2.
Free Radic Biol Med ; 51(3): 733-43, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21609760

RESUMO

Acetoacetate (AA) and 2-methylacetoacetate (MAA) are accumulated in metabolic disorders such as diabetes and isoleucinemia. Here we examine the mechanism of AA and MAA aerobic oxidation initiated by myoglobin (Mb)/H(2)O(2). We propose a chemiluminescent route involving a dioxetanone intermediate whose thermolysis yields triplet α-dicarbonyl species (methylglyoxal and diacetyl). The observed ultraweak chemiluminescence increased linearly on raising the concentration of either Mb (10-500 µM) or AA (10-100 mM). Oxygen uptake studies revealed that MAA is almost a 100-fold more reactive than AA. EPR spin-trapping studies with MNP/MAA revealed the intermediacy of an α-carbon-centered radical and acetyl radical. The latter radical, probably derived from triplet diacetyl, is totally suppressed by sorbate, a well-known quencher of triplet carbonyls. Furthermore, an EPR signal assignable to MNP-AA(•) adduct was observed and confirmed by isotope effects. Oxygen consumption and α-dicarbonyl yield were shown to be dependent on AA or MAA concentrations (1-50 mM) and on H(2)O(2) or tert-butOOH added to the Mb-containing reaction mixtures. That ferrylMb is involved in a peroxidase cycle acting on the substrates is suggested by the reaction pH profiles and immunospin-trapping experiments. The generation of radicals and triplet dicarbonyl products by Mb/H(2)O(2)/ß-ketoacids may contribute to the adverse health effects of ketogenic unbalance.


Assuntos
Complicações do Diabetes/induzido quimicamente , Complicações do Diabetes/enzimologia , Mioglobina/química , Mioglobina/metabolismo , Espécies Reativas de Oxigênio/efeitos adversos , Acetoacetatos/química , Biocatálise , Complicações do Diabetes/fisiopatologia , Diacetil/química , Humanos , Cetose , Oxirredução , Consumo de Oxigênio , Aldeído Pirúvico/química , Espécies Reativas de Oxigênio/química
3.
J Neurosci ; 28(16): 4115-22, 2008 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-18417691

RESUMO

Mitochondrial dysfunction and oxidative stress contribute to motor neuron degeneration in amyotrophic lateral sclerosis (ALS). Recent reports indicate that astrocytes expressing the mutations of superoxide dismutase-1 (SOD1) may contribute to motor neuron injury in ALS. Here, we provide evidence that mitochondrial dysfunction in SOD1(G93A) rat astrocytes causes astrocytes to induce apoptosis of motor neurons. Mitochondria from SOD1(G93A) rat astrocytes displayed a defective respiratory function, including decreased oxygen consumption, lack of ADP-dependent respiratory control, and decreased membrane potential. Protein 3-nitrotyrosine was detected immunochemically in mitochondrial proteins from SOD1(G93A) astrocytes, suggesting that mitochondrial defects were associated with nitroxidative damage. Furthermore, superoxide radical formation in mitochondria was increased in SOD1(G93A) astrocytes. Similar defects were found in mitochondria isolated from the spinal cord of SOD1(G93A) rats, and pretreatment of animals with the spin trap 5,5-dimethyl-1-pyrroline N-oxide restored mitochondrial function, forming adducts with mitochondrial proteins in vivo. As shown previously, SOD1(G93A) astrocytes induced death of motor neurons in cocultures, compared with nontransgenic ones. This behavior was recapitulated when nontransgenic astrocytes were treated with mitochondrial inhibitors. Remarkably, motor neuron loss was prevented by preincubation of SOD1(G93A) astrocytes with antioxidants and nitric oxide synthase inhibitors. In particular, low concentrations (approximately 10 nm) of two mitochondrial-targeted antioxidants, ubiquinone and carboxy-proxyl nitroxide, each covalently coupled to a triphenylphosphonium cation (Mito-Q and Mito-CP, respectively), prevented mitochondrial dysfunction, reduced superoxide production in SOD1(G93A) astrocytes, and restored motor neuron survival. Together, our results indicate that mitochondrial dysfunction in astrocytes critically influences motor neuron survival and support the potential pharmacological utility of mitochondrial-targeted antioxidants in ALS treatment.


Assuntos
Antioxidantes/administração & dosagem , Astrócitos/enzimologia , Mitocôndrias/enzimologia , Neurônios Motores/enzimologia , Degeneração Neural/enzimologia , Superóxido Dismutase/genética , Substituição de Aminoácidos/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/prevenção & controle , Animais , Animais Geneticamente Modificados , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Células Cultivadas , Sistemas de Liberação de Medicamentos/métodos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Degeneração Neural/genética , Degeneração Neural/prevenção & controle , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/fisiologia
4.
J Biol Chem ; 278(45): 44049-57, 2003 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-12920120

RESUMO

Peroxynitrite, a strong oxidant formed intravascularly in vivo, can diffuse onto erythrocytes and be largely consumed via a fast reaction (2 x 10(4) m(-1) s(-1)) with oxyhemoglobin. The reaction mechanism of peroxynitrite with oxyhemoglobin that results in the formation of methemoglobin remains to be elucidated. In this work, we studied the reaction under biologically relevant conditions using millimolar oxyhemoglobin concentrations and a stoichiometric excess of oxyhemoglobin over peroxynitrite. The results support a reaction mechanism that involves the net one-electron oxidation of the ferrous heme, isomerization of peroxynitrite to nitrate, and production of superoxide radical and hydrogen peroxide. Homolytic cleavage of peroxynitrite within the heme iron allows the formation of ferrylhemoglobin in approximately 10% yields, which can decay to methemoglobin at the expense of reducing equivalents of the globin moiety. Indeed, spin-trapping studies using 2-methyl-2-nitroso propane and 5,5 dimethyl-1-pyrroline-N-oxide (DMPO) demonstrated the formation of tyrosyl- and cysteinyl-derived radicals. DMPO also inhibited covalently linked dimerization products and led to the formation of DMPO-hemoglobin adducts. Hemoglobin nitration was not observed unless an excess of peroxynitrite over oxyhemoglobin was used, in agreement with a marginal formation of nitrogen dioxide. The results obtained support a role of oxyhemoglobin as a relevant intravascular sink of peroxynitrite.


Assuntos
Oxiemoglobinas/química , Ácido Peroxinitroso/química , Tirosina/análogos & derivados , Western Blotting , Óxidos N-Cíclicos/química , Dimerização , Espectroscopia de Ressonância de Spin Eletrônica , Eletroforese em Gel de Poliacrilamida , Globinas/química , Humanos , Peróxido de Hidrogênio/química , Imuno-Histoquímica , Ferro/química , Isomerismo , Metemoglobina/química , Nitratos/análise , Nitratos/química , Nitritos/análise , Oxigênio/análise , Espectrofotometria , Marcadores de Spin , Superóxidos/química , Tirosina/análise
5.
Chem Res Toxicol ; 15(4): 506-11, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11952336

RESUMO

Tempol is a stable nitroxide radical that has been shown to protect laboratory animals from the injury associated with conditions of oxidative and nitrosoactive stress. Tempol's protective mechanisms against reactive oxygen species have been extensively studied, but its interactions with reactive nitrogen species remain little explored. Recently, it has been shown that tempol is a potent inhibitor of peroxynitrite-mediated phenol nitration while it increases phenol nitrosation by a complex mechanism [Carrol et al. (2000) Chem. Res. Toxicol. 13, 294]. To obtain further mechanistic insights, we reexamined the interaction of peroxynitrite with tempol in the absence and presence of carbon dioxide. Stopped-flow kinetic studies confirmed that tempol does not react directly with peroxynitrite but levels off the amount of oxygen (monitored with an oxygen electrode) and nitrite (monitored by chemiluminescence) produced from peroxynitrite in the presence and absence of carbon dioxide to about 30% and 70% of the initial oxidant concentration at pH 5.4, 6.4, and 7.4. Tempol inhibited phenol nitration while increasing the amounts of 4-nitrosophenol, that attained yields close to 30% of the peroxynitrite in the presence of carbon dioxide at pH 7.4. Fast-flow EPR experiments showed detectable changes in the instantaneous tempol concentration (maximum of 15%) only in the presence of carbon dioxide. Under these conditions, the instantaneous concentration of the carbonate radical anion was reduced by tempol in a concentration-dependent manner. The results indicate that tempol is oxidized by peroxynitrite-derived radicals (*OH and CO(3)(*-), in the absence and presence of carbon dioxide, respectively) to the oxoammonium cation which, in turn, is reduced back to tempol while oxidizing peroxynitrite to oxygen and nitric oxide. The latter reacts rapidly with peroxynitrite-derived nitrogen dioxide to produce the nitrosating species, dinitrogen trioxide. Overall, the results support a role for peroxynitrite and its derived radicals in the tissue pathology associated with inflammatory conditions.


Assuntos
Antioxidantes/química , Óxidos N-Cíclicos/química , Nitratos/química , Nitrocompostos/química , Compostos Nitrosos/química , Dióxido de Carbono/química , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA