Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39057894

RESUMO

Recent advancements in amorphous materials have opened new avenues for exploring unusual magnetic phenomena at the sub-nanometer scale. We investigate the phenomenon of low-temperature "magnetic hardening" in heterogeneous amorphous Fe-Ni-B-Nb thin films, revealing a complex interplay between microstructure and magnetism. Magnetization hysteresis measurements at cryogenic temperatures show a significant increase in coercivity (HC) below 25 K, challenging the conventional Random Anisotropy Model (RAM) in predicting magnetic responses at cryogenic temperatures. Heterogeneous films demonstrate a distinct behavior in field-cooled and zero-field-cooled temperature-dependent magnetizations at low temperatures, characterized by strong irreversibility. This suggests spin-glass-like features at low temperatures, which are attributed to exchange frustration in disordered interfacial regions. These regions hinder direct exchange coupling between magnetic entities, leading to magnetic hardening. This study enhances the understanding of how microstructural intricacies impact magnetic dynamics in heterogeneous amorphous thin films at cryogenic temperatures.

2.
Sci Rep ; 11(1): 3734, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33580086

RESUMO

The emergence of perpendicular magnetic anisotropy (PMA) in amorphous thin films, which eventually transforms the magnetic spins form an in-plane to the out-of-plane configuration, also known as a spin-reorientation transition (SRT), is a fundamental roadblock to attain the high flux concentration advantage of these functional materials for broadband applications. The present work is focused on unfolding the origin of PMA in amorphous thin films deposited by magnetron sputtering. The amorphous films were deposited under a broad range of sputtering pressure (1.6-6.2 mTorr), and its effect on the thin film growth mechanisms was correlated to the static global magnetic behaviours, magnetic domain structure, and dynamic magnetic performance. The films deposited under low-pressure revealed a dominant in-plane uniaxial anisotropy along with an emerging, however feeble, perpendicular component, which eventually evolved as a dominant PMA when deposited under high-pressure sputtering. This change in the nature of anisotropy redefined the orientation of spins from in-plane to out-of-plane. The SRT in amorphous films was attributed to the dramatic change in the growth mechanism of disorder atomic structure from a homogeneously dispersed to a porous columnar microstructure. We suggest the origin of PMA is associated with the columnar growth of the amorphous films, which can be eluded by a careful selection of a deposition pressure regime to avoid its detrimental effect on the soft magnetic performance. To the author's best knowledge, no such report links the sputtering pressure as a governing mechanism of perpendicular magnetisation in technologically important amorphous thin films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...