Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 240: 124331, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37023873

RESUMO

Ginger oleoresin is widely used as a flavouring agent in many foods. But its bioactive components are unstable as being sensitive to heat, humidity and light. Hence this study proposes the encapsulation of ginger oleoresin in order to protect it and regulate its release in the gastrointestinal system via spray drying utilising whey protein isolate (WPI) and gum Acacia (GA) as wall materials. The feed emulsions used were characterised for emulsion stability, viscosity, droplet size and thermal properties. The GA microcapsules had a substantially greater mean particle diameter (1980 nm) than WPI microcapsules (1563 nm). The WPI microcapsules retained high content of 6-and 8-gingerol (89.57 and 12.54 mg g-1) compared to GA. The WPI microcapsules showed the largest mean inhibition zone with diameter of 16.64 mm against Escherichia coli and 22.68 mm against Staphylococcus aureus making them most effective in preventing the growth of test bacteria. Both WPI and GA microcapsules exhibited zeta potential value in the range of (-21.09 to -27.35 mV) indicating excellent colloidal stability. The highest concentration of antioxidant activity (73.33 %) and total phenols (33.92 mg g-1) was retained by WPI microcapsules in intestinal juice which ensures intestinal regulatory release.


Assuntos
Anti-Infecciosos , Zingiber officinale , Pós , Proteínas do Soro do Leite , Cápsulas , Polissacarídeos , Goma Arábica , Emulsões , Anti-Infecciosos/farmacologia
2.
J Sci Food Agric ; 103(1): 73-82, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35794734

RESUMO

BACKGROUND: Ginger oleoresin is prone to destruction from air, light and high temperatures and has a limited shelf life if kept improperly. Its viscous and sticky characteristics also make it difficult to handle and utilize. These issues can be solved via microencapsulation. The goal of this research was to evaluate how different wall materials affect the properties of microencapsulated ginger oleoresin powder. RESULTS: Ginger oleoresin microcapsules were developed through spray drying technique using gum acacia (GA) and whey protein isolate (WPI) as wall materials. The characteristics of the obtained powder, including water activity, wettability and encapsulation efficiency, were evaluated, corresponded to values of 0.20, 90.54 s and 84.15% for whey protein isolate-based ginger oleoresin powder. Whey protein isolate microcapsules also exhibited higher phenolic content (27.26 mg gallic acid equivalents g-1 ), total flavonoid (2.94 mg quercetin equivalents g-1 ) and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (68.71%) than GA microcapsules. Both WPI- and GA-based oleoresin microcapsules displayed poor flowability, but possessed a metastable amorphous state as indicated by X-ray diffraction. GA-encapsulated oleoresin microcapsules showed a significant increase in particle size (1983 nm) compared to WPI oleoresin microcapsules. Fourier transform infrared analysis of the developed oleoresin microcapsules indicated no change in molecular structure except for a variation in peak intensity. CONCLUSION: Whey protein isolate proved to be more efficient in maintaining the physicochemical and antioxidant activity of spray-dried ginger oleoresin powder. The present study revealed whey protein-based oleoresin powder could be used as a therapeutic agent in various nutraceutical applications. © 2022 Society of Chemical Industry.


Assuntos
Antioxidantes , Zingiber officinale , Cápsulas/química , Antioxidantes/química , Proteínas do Soro do Leite , Excipientes , Pós/química , Goma Arábica/química
3.
J Food Sci Technol ; 57(10): 3556-3563, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32904030

RESUMO

The effect of antioxidants, temperature, packaging materials and storage periods was investigated in medium shelled walnut kernels (Hamdan) variety. The kernels were mechanically dried (40 °C), standardized and treated with butylated hydroxylanisole and butylated hydroxytoluene in combination at concentrations (0.015%) each. Then packed in laminates under vacuum and high density polyethylene non vacuum packaging materials and stored under ambient and refrigerated temperature conditions (4 °C) for a period of 9 months. All tested extracts possessed appreciable antioxidant potential. The bioactive compounds were identified by using chromatographic techniques (GC-MS and LC-MS). Before storage dried kernels exhibited high values of total phenols (31.23 mgGAE/gm), DPPH (215.13 µmol TAEg-1) and low value of non enzymatic browning (0.63 OD). Walnuts packed in laminates under vacuum and refrigerated conditions exhibited higher values of total phenols, total flavonoids, DPPH and subsequently lower change in non-enzymatic browning reactions throughout the experiment. After 90 days of storage maximum loss in total phenols and DPPH value and highest value of non enzymatic browning was observed in high density polyethylene non vacuum packaging materials under ambient temperature. The major phenolic components identified by GC/MS and LC/MS analysis were linoleic acid, oleic acid, hexadecanoic acid, epicatechin, quercetin, epicatechin and ellagic acid respectively. This study validates the antioxidant potential of the walnut kernels and the positive relationship between total phenolic content, total flavonoids and antioxidant activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...