Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 346: 140597, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37925025

RESUMO

This article presents a novel and highly efficient electrocatalytic degradation method for two significant organophosphorus pesticides, fenitrothion (FEN), and methyl parathion (MPN), using a Ti/ß-PbO2-CeO2 modified anode (indirect oxidation). A comprehensive electrochemical investigation was also carried out to gain new insight into the redox behavior and destruction pathway of these pesticides (direct oxidation). The study also explores the effects of various operating parameters, such as initial solution pH, applied current density, and initial pesticides concentration, on the conversion-paired electrocatalytic removal process. To further enhance the degradation efficiency, a new configuration of the electrochemical cell was designed, employing two types of electrodes and two independent power supply devices. The conversion paired electrocatalytic degradation process of these pesticides involves first the direct reduction of FEN (or MPN) on a graphite cathode and then the indirect oxidation of reduced FEN (or MPN) by hydroxyl radicals electro generated on the Ti/ß-PbO2-CeO2 anode. The synergism of these two processes together will effectively lead to FEN (or MPN) degradation. The degradation percentages of 98% for FEN and 95% for MPN at the optimal conditions for the electrochemical degradation of these pesticides were achieved at pH = 7, initial concentration 50 mg L-1, with a current density of 90 mA cm-2 for direct reduction and 11 mA cm-2 for indirect oxidation. Overall, this study presents a promising and efficient approach for the remediation of organophosphorus pesticide-contaminated environments, offering valuable insights into the electrochemical degradation process and highlighting the potential for practical application in wastewater treatment and environmental protection.


Assuntos
Metil Paration , Praguicidas , Poluentes Químicos da Água , Compostos Organofosforados , Óxidos , Oxirredução , Eletrodos , Titânio , Poluentes Químicos da Água/análise
2.
Sci Rep ; 12(1): 4921, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318352

RESUMO

Electrochemical oxidation of imipramine (IMP) has been studied in aqueous solutions by cyclic voltammetry and controlled-potential coulometry techniques. Our voltammetric results show a complex behavior for oxidation of IMP at different pH values. In this study, we focused our attention on the electrochemical oxidation of IMP at a pH of about 5. Under these conditions, our results show that the oxidation of IMP leads to the formation of a unique dimer of IMP (DIMP). The structure of synthesized dimer is fully characterized by UV-visible, FTIR, 1H NMR, 13C NMR and mass spectrometry techniques. It seems that the first step in the oxidation of IMP is the cleavage of the alkyl group (formation of IMPH). After this, a domino oxidation-hydroxylation-dimerization-oxidation reaction, converts IMPH to (E)-10,10',11,11'-tetrahydro-[2,2'-bidibenzo[b,f]azepinylidene]-1,1'(5H,5'H)-dione (DIMP). The synthesis of DIMP is performed in an aqueous solution under mild conditions, without the need for any catalyst or oxidant. Based on our electrochemical findings as well as the identification of the final product, a possible reaction mechanism for IMP oxidation has been proposed. Conjugated double bonds in the DIMP structure cause the compound to become colored with sufficient fluorescence activity (excitation wave-length 535 nm and emission wave-length 625 nm). Moreover, DIMP has been evaluated for in vitro antibacterial. The antibacterial tests indicated that DIMP showed good antibacterial performance against all examined gram-positive and gram-negative bacteria (Staphylococcus aureus, Bacillus cereus, Escherichia coli and Shigella sonnei).


Assuntos
Antibacterianos , Bactérias Gram-Negativas , Antibacterianos/química , Escherichia coli , Corantes Fluorescentes , Bactérias Gram-Positivas , Imipramina/farmacologia , Testes de Sensibilidade Microbiana
3.
Sci Rep ; 10(1): 17904, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087774

RESUMO

This study is the first report of electrochemical generation of hydroxyimino-cyclohexa-dien-ylidene haloniums and their application in the synthesis of new halo-N-hydroxysulfonamide derivatives. These compounds were obtained in a one-pot process based on the reaction of halonium acceptors with arylsulfinic acids. The method is easy to carry out, as it is performed using the carbon electrodes in a simple undivided cell. The protocol has a broad substrate scope with a tolerance for a variety of functional groups. The proposed mechanism is a ping-pong type reaction mechanism, which in its first stage the halonitroarene is reduced at the cathode to related hydroxylamine and in the second stage the cathodically generated hydroxylamine by oxidation at the anode and participating in disproportionation reaction is converted to the halonium acceptor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...