Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Phycol ; 49(4): 395-412, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26504365

RESUMO

Representatives of the closely related genera, Interfilum and Klebsormidium, are characterized by unicells, dyads or packets in Interfilum and contrasting uniseriate filaments in Klebsormidium. According to the literature, these distinct thallus forms originate by different types of cell division, sporulation (cytogony) versus vegetative cell division (cytotomy), but investigations of their morphology and ultrastructure show a high degree of similarity. Cell walls of both genera are characterized by triangular spaces between cell walls of neighbouring cells and the parental wall or central space among the walls of a cell packet, exfoliations and projections of the parental wall and cap-like and H-like fragments of the cell wall. In both genera, each cell has its individual cell wall and it also has part of the common parental wall or its remnants. Therefore, vegetative cells of Interfilum and Klebsormidium probably divide by the same type of cell division (sporulation-like). Various strains representing different species of the two genera are characterized by differences in cell wall ultrastructure, particularly the level of preservation, rupture or gelatinization of the parental wall surrounding the daughter cells. The differing morphologies of representatives of various lineages result from features of the parental wall during cell separation and detachment. Cell division in three planes (usual in Interfilum and a rare event in Klebsormidium) takes place in spherical or short cylindrical cells, with the chloroplast positioned perpendicularly or obliquely to the filament (dyad) axis. The morphological differences are mainly a consequence of differing fates of the parental wall after cell division and detachment. The development of different morphologies within the two genera mostly depends on characters such as the shape of cells, texture of cell walls, mechanical interactions between cells and the influence of environmental conditions.

2.
Environ Microbiol ; 11(3): 554-65, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19278444

RESUMO

The genetic diversity of all available culture strains of the Tribonemataceae (Stramenopiles, Xanthophyceae) from Antarctica was assessed using the chloroplast-encoded psbA /rbcL spacer region sequences, a highly variable molecular marker, to test for endemism when compared with their closest temperate relatives. There was no species endemic for Antarctica, and no phylogenetic clade corresponded to a limited geographical region. However, species of the Tribonemataceae may have Antarctic populations that are distinct from those of other regions because the Antarctic strain spacer sequences were not identical to sequences from temperate regions. Spacer sequences from five new Antarctic isolates were identical to one or more previously available Antarctic strains, indicating that the Tribonemataceae diversity in Antarctic may be rather limited. Direct comparisons of the spacer sequences and phylogenetic analyses of the more conserved rbcL gene revealed that current morphospecies were inadequate to describe the actual biodiversity of the group. For example, the genus Xanthonema, as currently circumscribed, was paraphyletic. Fortunately, the presence of distinctive sequence regions within the psbA/rbcL spacer, together with differences in the rbcL phylogeny, provided significant autoapomorphic criteria to re-define the Tribonemataceae species.


Assuntos
Biodiversidade , Eucariotos/classificação , Eucariotos/isolamento & purificação , Microbiologia do Solo , Regiões Antárticas , Sequência de Bases , Análise por Conglomerados , DNA de Algas/química , DNA de Algas/genética , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , DNA Intergênico , Eucariotos/citologia , Dados de Sequência Molecular , Complexo de Proteína do Fotossistema II/genética , Filogenia , Ribulose-Bifosfato Carboxilase/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
3.
J Phycol ; 44(6): 1586-603, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27039871

RESUMO

Sarcinoid aeroterrestrial green algae were isolated from three arid locations in Ukraine and the Czech Republic. Although gross morphology suggested an affinity with Desmococcus (for taxonomic authorities, see Table S1 in the supplementary material), the cellular morphological characteristics were reminiscent of those of Geminella terricola. However, the presence of a complex of ultrastructural features indicated that these isolates were members of the streptophyte lineage in the green plants. 18S rDNA sequence phylogenies provided evidence of a close relationship with Klebsormidium in the Streptophyta, while the position of Desmococcus was within the Trebouxiophyceae. In the internal transcribed spacer (ITS) rDNA phylogeny, the sarcinoid isolates were closely related with strains of G. terricola and Interfilum paradoxum. Strains of that clade were morphologically united by a specific type of cell division that involves the association of persistent, cap-shaped remains of the mother cell wall with daughter cells. Consequently, these strains were assigned to a redefined genus Interfilum, and a new species, I. massjukiae, was described to accommodate one of the sarcinoid isolates. As the position of the genus Geminella was in the Trebouxiophyceae, the streptophyte G. terricola was transferred to Interfilum, as I. terricola comb. nov., but the ITS rDNA analyses proved inconclusive to resolve its affinities with other species of Interfilum due to intragenomic polymorphisms. The species of Interfilum had a closer relationship with K. flaccidum than with other species of Klebsormidium. The latter genus may not be monophyletic in its present circumscription.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...