Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Strahlenther Onkol ; 199(12): 1242-1254, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36932237

RESUMO

PURPOSE: Effects of X­ray energy levels used for myeloablative lethal total body irradiation (TBI) delivery prior to bone marrow transplantation (BMT) in preclinical mouse models were examined. MATERIALS AND METHODS: In mouse models, single-fraction myeloablative TBI at a lethal dose was delivered using two different X­ray devices, either low (160 kV cabinet irradiator) or high energy (6 MV linear accelerator), before semi-allogeneic hematopoietic stem-cell transplantation (HSCT) to ensure bone marrow (BM) chimerism, graft-versus-host disease (GVHD), and tumor engraftment. Recipient mice were clinically followed for 80 days after bone marrow transplantation (BMT). Flow cytometry was performed to assess donor chimerism and tumor engraftment in recipient mice. RESULTS: Both X­ray irradiation techniques delivered a 10 Gy single fraction of TBI, presented a lethal effect, and could allow near-complete early donor chimerism on day 13. However, low-energy irradiation increased T cells' alloreactivity compared to high-energy irradiation, leading to clinical consequences for GVHD and tumor engraftment outcomes. The alloreactive effect differences might be attributed to the distinction in inflammatory status of irradiated recipients at donor cell infusion (D0). Delaying donor cell administration (D1 after lethal TBI) attenuated T cells' alloreactivity and clinical outcomes in GVHD mouse models. CONCLUSION: Different X­ray irradiation modalities condition T cell alloreactivity in experimental semi-allogeneic BMT. Low-energy X­ray irradiator induces a post-TBI inflammatory burst and exacerbates alloreactive reactions. This technical and biological information should be considered in interpreting GVHD/ graft-versus-leukemia effect results in mice experimental models of BMT.


Assuntos
Doença Enxerto-Hospedeiro , Leucemia , Camundongos , Animais , Medula Óssea/efeitos da radiação , Transplante Homólogo , Raios X , Irradiação Corporal Total , Quimerismo , Transplante de Medula Óssea/métodos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...