Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1447301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39171261

RESUMO

Introduction: This study investigated the interaction with membrane mimetic systems (LUVs), bacterial membranes, the CD spectra, and the bactericidal activity of two designed trematocine mutants, named Trem-HK and Trem-HSK. Mutants were constructed from the scaffold of Trematocine (Trem), a natural 22-amino acid AMP from the Antarctic fish Trematomus bernacchii, aiming to increase their positive charge. Methods: The selectivity of the designed AMPs towards bacterial membranes was improved compared to Trematocine, verified by their interaction with different LUVs and their membranolytic activity. Additionally, their α-helical conformation was not influenced by the amino acid substitutions. Our findings revealed a significant enhancement in antibacterial efficacy against ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae family) pathogens for both Trem-HK and Trem-HSK. Results: Firstly, we showed that the selectivity of the two new designed AMPs towards bacterial membranes was greatly improved compared to Trematocine, verifying their interaction with different LUVs and their membranolytic activity. We determined that their α-helical conformation was not influenced by the amino acid substitutions. We characterized the tested bacterial collection for resistance traits to different classes of antibiotics. The minimum inhibitory and bactericidal concentration (MIC and MBC) values of the ESKAPE collection were reduced by up to 80% compared to Trematocine. The bactericidal concentrations of Trematocine mutants showed important membranolytic action, evident by scanning electron microscopy, on all tested species. We further evaluated the cytotoxicity and hemolytic activity of the mutants. At 2.5 µM concentration, both mutants demonstrated low cytotoxicity and hemolysis, indicating selectivity towards bacterial cells. However, these effects increased at higher concentrations. Discussion: Assessment of in vivo toxicity using the Galleria mellonella model revealed no adverse effects in larvae treated with both mutants, even at concentrations up to 20 times higher than the lowest MIC observed for Acinetobacter baumannii, suggesting a high potential safety profile for the mutants. This study highlights the significant improvement in antibacterial efficacy achieved by increasing the positive charge of Trem-HK and Trem-HSK. This improvement was reached at the cost of reduced biocompatibility. Further research is necessary to optimize the balance between efficacy and safety for these promising AMPs.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39197750

RESUMO

BACKGROUND: Biological therapies, such as mepolizumab, have transformed the treatment of severe eosinophilic asthma. While mepolizumab's short-term effectiveness is established, there is limited evidence on its ability to achieve long-term clinical remission. OBJECTIVE: To evaluate the long-term effectiveness and safety of mepolizumab, explore its potential to induce clinical and sustained remission, and identify baseline factors associated with the likelihood of achieving remission over 24 months. METHODS: The REMI-M is a retrospective, real-world, multicenter study that analyzed 303 severe eosinophilic asthma patients who received mepolizumab. Clinical, demographic, and safety data were collected at baseline, 3, 6, 12, and 24 months. The most commonly used definitions of clinical remission, which included no exacerbations, no oral corticosteroids (OCS) use, and good asthma control with or without assessment of lung function parameters, were assessed. Sustained remission was defined as reaching clinical remission at 12 months and maintaining it until the end of the 24-month period. RESULTS: Clinical remission rates ranged from 28.6% to 43.2% after 12 months and from 26.8% to 52.9% after 24 months, based on the different remission definitions. The proportion of patients achieving sustained remission varied between 14.6% to 29%. Factors associated with the likelihood of achieving clinical remission included the presence of aspirin-exacerbated respiratory disease, better lung function at baseline, male sex, absence of anxiety/depression, gastro-esophageal reflux disease, bronchiectasis, and reduced OCS consumption. Adverse events were infrequent. CONCLUSIONS: This study demonstrates the real-world effectiveness of mepolizumab in achieving clinical remission and sustained remission in severe eosinophilic asthma over 24 months. The identification of distinct factors associated with the likelihood of achieving clinical remission emphasizes the importance of comprehensive management of comorbidities and timely identification of patients who may benefit from biologics.

3.
J Clin Med ; 13(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38398397

RESUMO

(1) Background: Few data are available on the risk of airway dysfunction in protease inhibitor (PI*) M heterozygotes carrying rare null or deficient allelic variants of the gene SERPINA-1 (PI*MR). (2) Methods: In this observational study, in a cohort of PI*MR heterozygotes, we evaluated respiratory functional parameters at baseline and at one-year follow-up. Moreover, we compared such parameters with those of the PI*MZ and PI*MS patients. (3) Results: A total of 60 patients were recruited; 35 PI*MR, 11 PI*MZ and 14 PI*MS. At the annual follow-up, the PI*MR and PI*MZ patients demonstrated a significantly higher FEV1 decline than the PI*MS group (p = 0.04 and p = 0.018, respectively). The PI*MR patients showed a significant increase in DLCO annual decline in comparison with the PI*MS group (p = 0.02). At baseline, the PI*MR smoking patients, compared with nonsmokers, showed statistically significant lower values of FEV1, FEV1/FVC and DLCO (p = 0.0004, p < 0.0001, p = 0.007, respectively) and, at the one-year follow-up, they displayed a significantly higher FEV1 and DLCO decline (p = 0.0022, p = 0.011, respectively). PI*MR heterozygotes with COPD showed a significantly higher FEV1, FEV1/FVC and DLCO annual decline in comparison with healthy PI*MR (p = 0.0083, p = 0.043, p = 0.041). (4) Conclusions: These results suggest that PI*MR heterozygotes, particularly smokers with COPD, have a greater annual decline in respiratory functional parameters and need to be monitored.

4.
Antibiotics (Basel) ; 12(1)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36671385

RESUMO

The introduction of antibiotics has revolutionized the treatment and prevention of microbial infections. However, the global spread of pathogens resistant to available antibiotics is a major concern. Recently, the WHO has updated the priority list of multidrug-resistant (MDR) species for which the discovery of new therapeutics is urgently needed. In this scenario, antimicrobial peptides (AMPs) are a new potential alternative to conventional antibiotics, as they show a low risk of developing antimicrobial resistance, thus preventing MDR bacterial infections. However, there are limitations and challenges related to the clinical impact of AMPs, as well as great scientific efforts to find solutions aimed at improving their biological activity, in vivo stability, and bioavailability by reducing the eventual toxicity. To overcome some of these issues, different types of nanoparticles (NPs) have been developed for AMP delivery over the last decades. In this review, we provide an update on recent nanosystems applied to AMPs, with special attention on their potential pharmaceutical applications for the treatment of bacterial infections. Among lipid nanomaterials, solid lipid NPs and lipid nanocapsules have been employed to enhance AMP solubility and protect peptides from proteolytic degradation. In addition, polymeric NPs, particularly nanogels, are able to help in reducing AMP toxicity and also increasing AMP loading. To boost AMP activity instead, mesoporous silica or gold NPs can be selected due to their easy surface functionalization. They have been also used as nanocarriers for different AMP combinations, thus synergistically potentiating their action against pathogens.

5.
Int J Mol Sci ; 23(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35216297

RESUMO

The increasing resistance of fungi to antibiotics is a severe challenge in public health, and newly effective drugs are required. Promising potential medications are lipopeptides, linear antimicrobial peptides (AMPs) conjugated to a lipid tail, usually at the N-terminus. In this paper, we investigated the in vitro and in vivo antifungal activity of three short myristoylated and non-myristoylated peptides derived from a mutant of the AMP Chionodracine. We determined their interaction with anionic and zwitterionic membrane-mimicking vesicles and their structure during this interaction. We then investigated their cytotoxic and hemolytic activity against mammalian cells. Lipidated peptides showed a broad spectrum of activity against a relevant panel of pathogen fungi belonging to Candida spp., including the multidrug-resistant C. auris. The antifungal activity was also observed vs. biofilms of C. albicans, C. tropicalis, and C. auris. Finally, a pilot efficacy study was conducted on the in vivo model consisting of Galleria mellonella larvae. Treatment with the most-promising myristoylated peptide was effective in counteracting the infection from C. auris and C. albicans and the death of the larvae. Therefore, this myristoylated peptide is a potential candidate to develop antifungal agents against human fungal pathogens.


Assuntos
Antifúngicos , Candida , Animais , Antifúngicos/química , Antifúngicos/farmacologia , Biofilmes , Candida albicans , Humanos , Larva , Lipopeptídeos/farmacologia , Mamíferos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA