Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 172(4): 2445-2458, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27770060

RESUMO

While the importance of cell type specificity in plant adaptive responses is widely accepted, only a limited number of studies have addressed this issue at the functional level. We have combined electrophysiological, imaging, and biochemical techniques to reveal the physiological mechanisms conferring higher sensitivity of apical root cells to salinity in barley (Hordeum vulgare). We show that salinity application to the root apex arrests root growth in a highly tissue- and treatment-specific manner. Although salinity-induced transient net Na+ uptake was about 4-fold higher in the root apex compared with the mature zone, mature root cells accumulated more cytosolic and vacuolar Na+, suggesting that the higher sensitivity of apical cells to salt is not related to either enhanced Na+ exclusion or sequestration inside the root. Rather, the above differential sensitivity between the two zones originates from a 10-fold difference in K+ efflux between the mature zone and the apical region (much poorer in the root apex) of the root. Major factors contributing to this poor K+ retention ability are (1) an intrinsically lower H+-ATPase activity in the root apex, (2) greater salt-induced membrane depolarization, and (3) a higher reactive oxygen species production under NaCl and a larger density of reactive oxygen species-activated cation currents in the apex. Salinity treatment increased (2- to 5-fold) the content of 10 (out of 25 detected) amino acids in the root apex but not in the mature zone and changed the organic acid and sugar contents. The causal link between the observed changes in the root metabolic profile and the regulation of transporter activity is discussed.


Assuntos
Aclimatação , Hordeum/enzimologia , Hordeum/fisiologia , Raízes de Plantas/enzimologia , Potássio/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Salinidade , Estresse Fisiológico , Aclimatação/efeitos dos fármacos , Alantoína/farmacologia , Cátions/metabolismo , Hordeum/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Metabolômica , Modelos Biológicos , Especificidade de Órgãos/efeitos dos fármacos , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Sódio/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos
2.
J Exp Bot ; 66(7): 1865-75, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25614660

RESUMO

The role of endogenous salicylic acid (SA) signalling cascades in plant responses to salt and oxidative stresses is unclear. Arabidopsis SA signalling mutants, namely npr1-5 (non-expresser of pathogenesis related gene1), which lacks NPR1-dependent SA signalling, and nudt7 (nudix hydrolase7), which has both constitutively expressed NPR1-dependent and NPR1-independent SA signalling pathways, were compared with the wild type (Col-0) during salt or oxidative stresses. Growth and viability staining showed that, compared with wild type, the npr1-5 mutant was sensitive to either salt or oxidative stress, whereas the nudt7 mutant was tolerant. Acute salt stress caused the strongest membrane potential depolarization, highest sodium and proton influx, and potassium loss from npr1-5 roots in comparison with the wild type and nudt7 mutant. Though salt stress-induced hydrogen peroxide production was lowest in the npr1-5 mutant, the reactive oxygen species (ROS) stress (induced by 1mM of hydroxyl-radical-generating copper-ascorbate mix, or either 1 or 10mM hydrogen peroxide) caused a higher potassium loss from the roots of the npr1-5 mutant than the wild type and nudt7 mutant. Long-term salt exposure resulted in the highest sodium and the lowest potassium concentration in the shoots of npr1-5 mutant in comparison with the wild type and nudt7 mutant. The above results demonstrate that NPR1-dependent SA signalling is pivotal to (i) controlling Na(+) entry into the root tissue and its subsequent long-distance transport into the shoot, and (ii) preventing a potassium loss through depolarization-activated outward-rectifying potassium and ROS-activated non-selective cation channels. In conclusion, NPR1-dependent SA signalling is central to the salt and oxidative stress tolerance in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Ácido Salicílico/metabolismo , Transdução de Sinais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Mutação , Estresse Oxidativo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Potássio/metabolismo , Prótons , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal , Cloreto de Sódio/farmacologia , Estresse Fisiológico
3.
Plant Cell Environ ; 37(3): 589-600, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23937055

RESUMO

Salt sensitive (pea) and salt tolerant (barley) species were used to understand the physiological basis of differential salinity tolerance in crops. Pea plants were much more efficient in restoring otherwise depolarized membrane potential thereby effectively decreasing K(+) efflux through depolarization-activated outward rectifying potassium channels. At the same time, pea root apex was 10-fold more sensitive to physiologically relevant H2 O2 concentration and accumulated larger amounts of H2 O2 under saline conditions. This resulted in a rapid loss of cell viability in the pea root apex. Barley plants rapidly loaded Na(+) into the xylem; this increase was only transient, and xylem and leaf Na(+) concentration remained at a steady level for weeks. On the contrary, pea plants restricted xylem Na(+) loading during the first few days of treatment but failed to prevent shoot Na(+) elevation in the long term. It is concluded that superior salinity tolerance of barley plants compared with pea is conferred by at least three different mechanisms: (1) efficient control of xylem Na(+) loading; (2) efficient control of H2 O2 accumulation and reduced sensitivity of non-selective cation channels to H2 O2 in the root apex; and (3) higher energy saving efficiency, with less ATP spent to maintain membrane potential under saline conditions.


Assuntos
Hordeum/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Pisum sativum/fisiologia , Canais de Potássio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Tolerância ao Sal/efeitos dos fármacos , Xilema/fisiologia , Trifosfato de Adenosina/metabolismo , Biomassa , Gadolínio/farmacologia , Hordeum/efeitos dos fármacos , Hordeum/crescimento & desenvolvimento , Peróxido de Hidrogênio/metabolismo , Cinética , Moduladores de Transporte de Membrana/farmacologia , Especificidade de Órgãos/efeitos dos fármacos , Pisum sativum/efeitos dos fármacos , Pisum sativum/crescimento & desenvolvimento , Permeabilidade/efeitos dos fármacos , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Potássio/metabolismo , Salinidade , Sódio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Xilema/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...