Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 22(24): 9869-9875, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36511693

RESUMO

In our work, we study the dynamics of a graphene Corbino disk supported by a gold mechanical resonator in the presence of a magnetic field. We demonstrate here that our graphene/gold mechanical structure exhibits a nontrivial resonance frequency dependence on the applied magnetic field, showing how this feature is indicative of the de Haas-van Alphen effect in the graphene Corbino disk. Relying on the mechanical resonances of the Au structure, our detection scheme is essentially independent of the material considered and can be applied for dHvA measurements on any conducting 2D material. In particular, the scheme is expected to be an important tool in studies of centrosymmetric transition metal dichalcogenide (TMD) crystals, shedding new light on hidden magnetization and interaction effects.

2.
Nat Commun ; 3: 987, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22871806

RESUMO

The coupling of distinct systems underlies nearly all physical phenomena. A basic instance is that of interacting harmonic oscillators, giving rise to, for example, the phonon eigenmodes in a lattice. Of particular importance are the interactions in hybrid quantum systems, which can combine the benefits of each part in quantum technologies. Here we investigate a hybrid optomechanical system having three degrees of freedom, consisting of a microwave cavity and two micromechanical beams with closely spaced frequencies around 32 MHz and no direct interaction. We record the first evidence of tripartite optomechanical mixing, implying that the eigenmodes are combinations of one photonic and two phononic modes. We identify an asymmetric dark mode having a long lifetime. Simultaneously, we operate the nearly macroscopic mechanical modes close to the motional quantum ground state, down to 1.8 thermal quanta, achieved by back-action cooling. These results constitute an important advance towards engineering of entangled motional states.

3.
Phys Rev Lett ; 104(23): 236402, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20867255

RESUMO

In this Letter we consider a spin-imbalanced two-component attractive Fermi gas loaded in a 1D optical lattice in the presence of an harmonic confining potential. We propose that the observation of the change in the double occupancy with respect to a lattice depth modulation can provide clear evidence of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase. Simulating the time evolution of the system, we can characterize the double occupancy spectrum for different initial conditions. In particular, we numerically observe a striking narrowing of the width of the spectrum for increasing imbalance. Using Bethe-ansatz equations in the strongly interacting limit, we show that the width relates directly to the FFLO wave vector q.


Assuntos
Teoria Quântica , Análise Espectral , Cinética , Modelos Teóricos , Fenômenos Ópticos
4.
Phys Rev Lett ; 103(6): 066404, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19792589

RESUMO

We consider a strongly repulsive two-component Fermi gas in a one-dimensional optical lattice described in terms of a Hubbard Hamiltonian. We analyze the response of the system to a periodic modulation of the hopping amplitude in the presence of a large two-body interaction. By (essentially) the exact simulations of the time evolution, we find a nontrivial double occupancy frequency dependence. We show how the dependence relates to the spectral features of the system given by the Bethe ansatz. The discrete nature of the spectrum is clearly reflected in the double occupancy after a long enough modulation time. We also discuss the implications of the 1D results to experiments in higher dimensional systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...