Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 238(3): 1085-1100, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36779574

RESUMO

Chromatin is a dynamic platform within which gene expression is controlled by epigenetic modifications, notably targeting amino acid residues of histone H3. Among them is lysine 27 of H3 (H3K27), the trimethylation of which by the Polycomb Repressive Complex 2 (PRC2) is instrumental in regulating spatiotemporal patterns of key developmental genes. H3K27 is also subjected to acetylation and is found at sites of active transcription. Most information on the function of histone residues and their associated modifications in plants was obtained from studies of loss-of-function mutants for the complexes that modify them. To decrypt the genuine function of H3K27, we expressed a non-modifiable variant of H3 at residue K27 (H3.3K27A ) in Arabidopsis, and developed a multi-scale approach combining in-depth phenotypical and cytological analyses, with transcriptomics and metabolomics. We uncovered that the H3.3K27A variant causes severe developmental defects, part of them are reminiscent of PRC2 mutants, part of them are new. They include early flowering, increased callus formation and short stems with thicker xylem cell layer. This latest phenotype correlates with mis-regulation of phenylpropanoid biosynthesis. Overall, our results reveal novel roles of H3K27 in plant cell fates and metabolic pathways, and highlight an epigenetic control point for elongation and lignin composition of the stem.


Assuntos
Arabidopsis , Histonas , Histonas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Lisina/metabolismo , Lignina/metabolismo , Metilação , Epigênese Genética , Genes Controladores do Desenvolvimento
2.
Science ; 373(6551): 192-197, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244409

RESUMO

Throughout development, plant meristems regularly produce organs in defined spiral, opposite, or whorl patterns. Cauliflowers present an unusual organ arrangement with a multitude of spirals nested over a wide range of scales. How such a fractal, self-similar organization emerges from developmental mechanisms has remained elusive. Combining experimental analyses in an Arabidopsis thaliana cauliflower-like mutant with modeling, we found that curd self-similarity arises because the meristems fail to form flowers but keep the "memory" of their transient passage in a floral state. Additional mutations affecting meristem growth can induce the production of conical structures reminiscent of the conspicuous fractal Romanesco shape. This study reveals how fractal-like forms may emerge from the combination of key, defined perturbations of floral developmental programs and growth dynamics.


Assuntos
Arabidopsis/anatomia & histologia , Arabidopsis/genética , Brassica/anatomia & histologia , Brassica/genética , Redes Reguladoras de Genes , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassica/crescimento & desenvolvimento , Flores/anatomia & histologia , Flores/genética , Flores/crescimento & desenvolvimento , Fractais , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Inflorescência/anatomia & histologia , Inflorescência/genética , Inflorescência/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Modelos Biológicos , Mutação , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
3.
Genes (Basel) ; 11(1)2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941094

RESUMO

The ATP-dependent Switch/Sucrose non-fermenting (SWI/SNF) chromatin remodeling complex (CRC) regulates the transcription of many genes by destabilizing interactions between DNA and histones. In plants, BRAHMA (BRM), one of the two catalytic ATPase subunits of the complex, is the closest homolog of the yeast and animal SWI2/SNF2 ATPases. We summarize here the advances describing the roles of BRM in plant development as well as its recently reported chromatin-independent role in pri-miRNA processing in vitro and in vivo. We also enlighten the roles of plant-specific partners that physically interact with BRM. Three main types of partners can be distinguished: (i) DNA-binding proteins such as transcription factors which mostly cooperate with BRM in developmental processes, (ii) enzymes such as kinases or proteasome-related proteins that use BRM as substrate and are often involved in response to abiotic stress, and (iii) an RNA-binding protein which is involved with BRM in chromatin-independent pri-miRNA processing. This overview contributes to the understanding of the central position occupied by BRM within regulatory networks controlling fundamental biological processes in plants.


Assuntos
Adenosina Trifosfatases , Proteínas de Plantas , Plantas , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , MicroRNAs/biossíntese , MicroRNAs/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Plantas/genética , Proteólise , Precursores de RNA/biossíntese , Precursores de RNA/genética , RNA de Plantas/biossíntese , RNA de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Front Neurosci ; 13: 538, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191230

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder causing a progressive motor weakness of all voluntary muscles, whose progression challenges communication modalities such as handwriting or speech. The current study investigated whether ALS subjects can use Eye-On-Line (EOL), a novel eye-operated communication device allowing, after training, to voluntarily control smooth-pursuit eye-movements (SPEM) so as to eye-write in cursive. To that aim, ALS participants (n = 12) with preserved eye-movements but impaired handwriting were trained during six on-site visits. The primary outcome of the study was the recognition of eye-written digits (0-9) from ALS and healthy control subjects by naïve "readers." Changes in oculomotor performance and the safety of EOL were also evaluated. At the end of the program, 69.4% of the eye-written digits from 11 ALS subjects were recognized by naïve readers, similar to the 67.3% found for eye-written digits from controls participants, with however, large inter-individual differences in both groups of "writers." Training with EOL was associated with a transient fatigue leading one ALS subject to drop out the study at the fifth visit. Otherwise, itching eyes was the most common adverse event (3 subjects). This study shows that, despite the impact of ALS on the motor system, most ALS participants could improve their mastering of eye-movements, so as to produce recognizable eye-written digits, although the eye-traces sometimes needed smoothing to ease digit legibility from both ALS subjects and control participants. The capability to endogenously and voluntarily generate eye-traces using EOL brings a novel way to communicate for disabled individuals, allowing creative personal and emotional expression.

5.
IEEE Trans Cybern ; 47(12): 4316-4327, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28114085

RESUMO

Indeterminate classifiers are cautious models able to predict more than one class in case of high uncertainty. A problem that arises when using such classifiers is how to evaluate their performances. This problem has already been considered in the case where all prediction errors have equivalent costs (that we will refer as the "0/1 costs" or accuracy setting). The purpose of this paper is to study the case of generic cost functions. We provide some properties that the costs of indeterminate predictions could or should follow, and review existing proposals in the light of those properties. This allows us to propose a general formula fitting our properties that can be used to produce and evaluate indeterminate predictions. Some experiments on the cost-sensitive problem of ordinal regression illustrate the behavior of the proposed evaluation criterion.

6.
Vesalius ; 21(1): 80-5, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26592086

RESUMO

A very large number of articles about vitalism have been published since 1894 in the journal Science. Vitalism is a theory according to which living organisms appear to possess something more than inanimate objects. The "vital principle" is minted in 1778 by Barthez in "Les nouveaux éléments de la science de l'homme", (Stahl talks of phlogiston for chemistry). In their view, the life of the whole is not the simple sum of the life of the components. Such a view was hatched in response to the Cartesian mechanist interpretation of living matter as proposed by Galileo and Descartes. Vitalist intuition was revived in the XXth century by new researchers such as Henri Bergson ("l'élan vital" or 'vital force') in France and Hans Driesch ("entelechy") in Germany. Could this view of life now be making a comeback in biology?


Assuntos
Biologia Sintética/história , Vitalismo/história , França , História do Século XIX , História do Século XX
7.
J Lipid Res ; 56(8): 1511-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26063461

RESUMO

Decreased brain content of DHA, the most abundant long-chain n-3 polyunsaturated fatty acid (n-3 LCPUFA) in the brain, is accompanied by severe neurosensorial impairments linked to impaired neurotransmission and impaired brain glucose utilization. In the present study, we hypothesized that increasing n-3 LCPUFA intake at an early age may help to prevent or correct the glucose hypometabolism observed during aging and age-related cognitive decline. The effects of 12 months' supplementation with n-3 LCPUFA on brain glucose utilization assessed by positron emission tomography was tested in young adult mouse lemurs (Microcebus murinus). Cognitive function was tested in parallel in the same animals. Lemurs supplemented with n-3 LCPUFA had higher brain glucose uptake and cerebral metabolic rate of glucose compared with controls in all brain regions. The n-3 LCPUFA-supplemented animals also had higher exploratory activity in an open-field task and lower evidence of anxiety in the Barnes maze. Our results demonstrate for the first time in a nonhuman primate that n-3 LCPUFA supplementation increases brain glucose uptake and metabolism and concomitantly reduces anxiety.


Assuntos
Ansiedade/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cheirogaleidae , Ácidos Graxos Ômega-3/farmacologia , Óleos de Peixe/química , Glucose/metabolismo , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Metabolismo Basal/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Encéfalo/fisiopatologia , Suplementos Nutricionais , Comportamento Exploratório/efeitos dos fármacos , Ácidos Graxos Ômega-3/sangue , Ácidos Graxos Ômega-3/uso terapêutico , Masculino , Memória Espacial/efeitos dos fármacos
8.
Plant J ; 74(4): 678-89, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23445516

RESUMO

In indeterminate inflorescences, floral meristems develop on the flanks of the shoot apical meristem, at positions determined by auxin maxima. The floral identity of these meristems is conferred by a handful of genes called floral meristem identity genes, among which the LEAFY (LFY) transcription factor plays a prominent role. However, the molecular mechanism controlling the early emergence of floral meristems remains unknown. A body of evidence indicates that LFY may contribute to this developmental shift, but a direct effect of LFY on meristem emergence has not been demonstrated. We have generated a LFY allele with reduced floral function and revealed its ability to stimulate axillary meristem growth. This role is barely detectable in the lfy single mutant but becomes obvious in several double mutant backgrounds and plants ectopically expressing LFY. We show that this role requires the ability of LFY to bind DNA, and is mediated by direct induction of REGULATOR OF AXILLARY MERISTEMS1 (RAX1) by LFY. We propose that this function unifies the diverse roles described for LFY in multiple angiosperm species, ranging from monocot inflorescence identity to legume leaf development, and that it probably pre-dates the origin of angiosperms.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Meristema/genética , Fatores de Transcrição/genética , Alelos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Cristalografia , Proteínas de Ligação a DNA , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Modelos Biológicos , Mutação , Motivos de Nucleotídeos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Multimerização Proteica , Estrutura Terciária de Proteína , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
9.
Mol Cell ; 49(3): 547-57, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23260658

RESUMO

In all organisms, replication impairment is a recognized source of genomic instability, raising an increasing interest in the fate of inactivated replication forks. We used Escherichia coli strains with a temperature-inactivated replicative helicase (DnaB) and in vivo single-molecule microscopy to quantify the detailed molecular processing of stalled replication forks. After helicase inactivation, RecA binds to blocked replication forks and is essential for the rapid release of hPol III. The entire holoenzyme is disrupted little by little, with some components lost in few minutes, while others are stable in 70% of cells for at least 1 hr. Although replisome dissociation is delayed in a recA mutant, it is not affected by RecF or RecO inactivation. RecFOR are required for full RecA filaments formation, and we propose that polymerase clearance can be catalyzed by short, RecFOR-independent RecA filaments. Our results identify a function for the universally conserved, central recombination protein RecA.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , DnaB Helicases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citologia , Escherichia coli/enzimologia , Complexos Multienzimáticos/metabolismo , Recombinases Rec A/metabolismo , DNA Polimerase III/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Fluorescência , Holoenzimas/metabolismo , Proteínas Luminescentes/metabolismo , Ligação Proteica , Temperatura
10.
J Vis ; 10(14)2010 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-21191135

RESUMO

Experiments that manipulated the visual feedback of the moving limb have suggested the existence of efficient and automatic online correction processes. We wanted to determine whether the latency/gain of the correction for a cursor jump are only influenced by the size of the cursor jump or whether they are also influenced by the need of a correction for the target to be reached. In Experiment 1, we used two target sizes (5 and 30 mm) and three cursor-jump amplitudes (5, 15, and 25 mm), so that for some target size/cursor-jump combinations, no correction would be needed to reach the target. Participants were not aware of the cursor jump, but we observed a 65% correction regardless of target size. In Experiment 2, participants pointed at a large target for which a 15-mm cursor jump never impeded target attainment. Participants modified the trajectory of their movement in the direction opposite to the cursor jump (42% of the cursor jump). Our results indicate that the latency of the correction for a cursor jump was not influenced by the size of the cursor jump or that of the target. However, the correction tailored the movement's initial impulse according to the target's characteristics.


Assuntos
Retroalimentação Sensorial/fisiologia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Adolescente , Adulto , Periféricos de Computador , Humanos , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Adulto Jovem
11.
Mol Microbiol ; 70(2): 537-48, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18942176

RESUMO

Replication fork reversal (RFR) is a reaction that takes place in Escherichia coli at replication forks arrested by the inactivation of a replication protein. Fork reversal involves the annealing of the leading and lagging strand ends; it results in the formation of a Holliday junction adjacent to DNA double-strand end, both of which are processed by recombination enzymes. In several replication mutants, replication fork reversal is catalysed by the RuvAB complex, originally characterized for its role in the last steps of homologous recombination, branch migration and resolution of Holliday junctions. We present here the isolation and characterization of ruvA and ruvB single mutants that are impaired for RFR at forks arrested by the inactivation of polymerase III, while they remain capable of homologous recombination. The positions of the mutations in the proteins and the genetic properties of the mutants suggest that the mutations affect DNA binding, RuvA-RuvB interaction and/or RuvB-helicase activity. These results show that a partial RuvA or RuvB defect affects primarily RFR, implying that RFR is a more demanding reaction than Holliday junction resolution.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Viabilidade Microbiana , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Ligação Proteica , Recombinação Genética
12.
PLoS Genet ; 4(3): e1000012, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18369438

RESUMO

RuvAB and RuvABC complexes catalyze branch migration and resolution of Holliday junctions (HJs) respectively. In addition to their action in the last steps of homologous recombination, they process HJs made by replication fork reversal, a reaction which occurs at inactivated replication forks by the annealing of blocked leading and lagging strand ends. RuvAB was recently proposed to bind replication forks and directly catalyze their conversion into HJs. We report here the isolation and characterization of two separation-of-function ruvA mutants that resolve HJs, based on their capacity to promote conjugational recombination and recombinational repair of UV and mitomycin C lesions, but have lost the capacity to reverse forks. In vivo and in vitro evidence indicate that the ruvA mutations affect DNA binding and the stimulation of RuvB helicase activity. This work shows that RuvA's actions at forks and at HJs can be genetically separated, and that RuvA mutants compromised for fork reversal remain fully capable of homologous recombination.


Assuntos
DNA Helicases/genética , DNA Bacteriano/genética , DNA Cruciforme/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , Reparo do DNA , Replicação do DNA , DNA Bacteriano/biossíntese , DNA Cruciforme/biossíntese , Escherichia coli/metabolismo , Escherichia coli/efeitos da radiação , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Genes Bacterianos , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Tolerância a Radiação/genética , Recombinação Genética
13.
Biol Cell ; 98(1): 23-32, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16354159

RESUMO

BACKGROUND INFORMATION: WIF-B9 is a hybrid cell line obtained by fusion of rat hepatoma cells (Fao) and human fibroblasts (WI38). It exhibits the structural and functional characteristics of differentiated hepatocytes, including active bile canaliculi. The aim of the present study was to characterize the WIF-B9 cell line as a model for analysing drug-induced hepatic effects. The drug metabolism potential of WIF-B9 cells was identified by studying the rat and human CYP (cytochrome P450) mRNA constitutive expression profile and induction potential after exposure to reference inducers. The morphological alterations provoked by chemical entities were also characterized. RESULTS: Competitive reverse transcriptase-PCR revealed that four rat (1A1, 2B1/2, 2E1 and 4A1) and four human (1A1, 2Cs, 2D6 and 2E1) CYP mRNA isoforms were constitutively expressed in WIF-B9 cells. The rat CYP forms were expressed at levels 2-4 orders of magnitude higher than the human forms. Exposure for 20-72 h to increasing concentrations of CYP reference inducers (beta-naphthoflavone, 3-methyl cholanthrene, dexamethasone, phenobarbital, clofibrate and pregnenolone 16alpha-carbonitrile) revealed that the rat CYP 1A1, 1A2, 3A1, 3A2 and 4A1 and human CYP 1A1 and 2Cs mRNAs were inducible. Rat CYP 1A1 and 1A2 were the most inducible isoforms since they were overexpressed up to 100-fold after 20-48 h of treatment with beta-naphthoflavone. Human CYP 1A1 and 2Cs mRNAs were induced 3-fold after 48 h of treatment with phenobarbital. Other mechanisms involved in hepatotoxicity were explored using microscopy and immunofluorescence. The WIF-B9 cell line exhibited fragmentation and dilatation of bile canaliculi upon exposure to erythromycin, and to isoniazid and cytochalasins, respectively. Monensin promoted cell depolarization and cytoplasmic granulation. Ethionine promoted cytoplasmic vacuolation and dilatation of the Golgi structures. CONCLUSIONS: These results indicate that the CYP expression and induction profiles and the morphological features of WIF-B9 cells allow prediction in vitro of the induction and hepatotoxicity profiles of chemical entities.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/enzimologia , Animais , Canalículos Biliares/efeitos dos fármacos , Canalículos Biliares/fisiologia , Linhagem Celular Tumoral , Citoplasma/efeitos dos fármacos , Indução Enzimática , Humanos , Células Híbridas , Isoenzimas/metabolismo , Microscopia Eletrônica , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
IEEE Trans Syst Man Cybern B Cybern ; 34(1): 95-109, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15369055

RESUMO

A new relational clustering method is introduced, based on the Dempster-Shafer theory of belief functions (or evidence theory). Given a matrix of dissimilarities between n objects, this method, referred to as evidential clustering (EVCLUS), assigns a basic belief assignment (or mass function) to each object in such a way that the degree of conflict between the masses given to any two objects reflects their dissimilarity. A notion of credal partition is introduced, which subsumes those of hard, fuzzy, and possibilistic partitions, allowing to gain deeper insight into the structure of the data. Experiments with several sets of real data demonstrate the good performances of the proposed method as compared with several state-of-the-art relational clustering techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...