Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Toxicon ; 230: 107158, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37172829

RESUMO

Solanum glaucophyllum Desf. is a calcinogenic plant responsible for enzootic calcinosis that affects ruminants and causes alterations in bone and cartilaginous tissues, among others. It is believed that changes in cartilage tissue, with reduced bone growth, are due to hypercalcitoninism, caused by excess vitamin D. However, we hypothesized that S. glaucophyllum Desf. can act directly on chondrocytes and therefore, chondrocyte cultures from the epiphysis of the long bones of newborn rats were used as a model to elucidate the direct effects of S. glaucophyllum Desf. on bone growth. Plant samples were collected from Cañuelas, Argentina. An aliquot of the plant extract was used to quantify vitamin D (1,25(OH)2D3). The effects of the three concentrations of the plant extract were tested in cultures of chondrocytes extracted from the epiphyses of the long bones of 32 three-day-old Wistar rats. A control group (without extract), and three groups treated with different concentrations of plant extract were formed: group 1 (100 µL/L); group 2 (1 mL/L), and group 3 (5 mL/L), containing respectively 1 × 10-9 M, 1 × 10-8 M, and 5 × 10-8 M of 1,25(OH)2D3. After 7, 14, and 21 days of culture, MTT assay for cell viability, alkaline phosphatase activity, and quantification of the percentage of areas with glycosaminoglycans (GAG) stained with periodic acid-Schiff (PAS) were performed. On day 7, all chondrocytes in group 3, that is, those with the highest concentration of plant extract, died. On days 14 and 21, groups 1 and 2 showed a significant reduction in chondrocyte viability compared to the control. At 7, 14, and 21 days, groups 1 and 2 showed significantly lower alkaline phosphatase activity than the control. On day 21, group 2 showed a significant reduction in areas with PAS + GAGs. There were no significant differences between the groups in the expression of gene transcripts for Sox9, Col2, ColX, and aggrecan. The S. glaucophyllum Desf. extract directly affected growing rat chondrocytes by reducing viability, alkaline phosphatase activity, and GAG synthesis without altering the expression of gene transcripts for Sox9, Col2, ColX, and aggrecan, which may be one of the mechanisms by which there is a reduction in bone growth in animals intoxicated by the plant.


Assuntos
Condrócitos , Solanum glaucophyllum , Ratos , Animais , Condrócitos/metabolismo , Animais Recém-Nascidos , Calcitriol/metabolismo , Ratos Wistar , Agrecanas/metabolismo , Fosfatase Alcalina , Cartilagem , Plantas , Vitamina D/metabolismo , Extratos Vegetais , Células Cultivadas
2.
J Anim Physiol Anim Nutr (Berl) ; 104(5): 1256-1266, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32281708

RESUMO

The Solanum glaucophyllum Desf. has been used to treat and prevent diseases in human and veterinary medicine. On the other hand, plant poisoning causes several bone diseases, among them osteoporosis, which is characterized by osteoblastic hypoplasia. Because the osteoblast is a cell derived from the differentiation of mesenchymal stem cells (MSCs) from bone marrow, the hypothesis is that the plant reduces the osteogenic differentiation of MSCs. The objective of this study was to evaluate the effects of S. glaucophyllum Desf. extract on MSCs cultured in osteogenic differentiation medium. We determined by liquid chromatography that 1 ml of plant extract contained 3.8 µl of 1,25(OH)2 D3 (calcitriol). Four groups of MSCs cultivated in osteogenic medium were evaluated as follows: (a) treated with 100 µl of extract/L containing 0.4 µg/L of calcitriol; (b) treated with 1 ml of extract/L containing 4 µg/L of calcitriol; (c) treated with 5 ml of extract/L containing 20 µg/L of calcitriol; and (d) a control group without extract. We performed alkaline phosphatase activity assay, analysis of MTT conversion to formazan, and evaluated the percentage of cells, and number and diameter of mineralization nodules. The expression of gene transcripts for osteopontin, bone sialoprotein and BMP-2 was analysed by RT-qPCR. After 21 days, there was a significant reduction in MTT conversion to formazan in treated groups, of the cellularity in the group with 5 ml of extract/L, and in the number and size of mineralization nodules in the groups treated with 1 and 5 ml of extract/L. The 5 ml extract/L concentration also reduced transcript expression of osteopontin. It is concluded that S. glaucophyllum Desf. at concentrations of 1 and 5 ml extract/L reduced mineralized matrix synthesis in MSCs cultivated in osteogenic differentiation medium, which suggests that this is one of the mechanisms by which osteoporosis occurs in intoxicated animals.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Extratos Vegetais/farmacologia , Solanum glaucophyllum/química , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular/fisiologia , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Sialoproteína de Ligação à Integrina/genética , Sialoproteína de Ligação à Integrina/metabolismo , Células-Tronco Mesenquimais/fisiologia , Osteopontina/genética , Osteopontina/metabolismo , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Ratos
3.
Res Vet Sci ; 130: 93-97, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32155472

RESUMO

Cutaneous papilloma (CP) and cutaneous squamous cell carcinoma (CSCC) are frequent epidermal tumours in dogs. In this regard, the study of the deregulated activity of signalling molecules during the epidermal tumourigenesis process could be the basis for the development of novel molecular mechanism-based antitumour treatments for CP and CSCC canine patients. Recent evidence suggests that the development and progression of CP and CSCC involve the dysregulated activation of the Hippo signalling pathway effector YAP. Thus, in the present study, we evaluated the immunohistochemical expression pattern of YAP in sections of tissue microarrays constructed from canine samples of normal epidermis, CP, preneoplastic epidermis, and CSCC. In samples of CP, preneoplastic epidermis, and CSCC, YAP expression was significantly increased relative to normal epidermis. This emerging evidence suggests that the dysregulated activity of the Hippo signalling pathway effector YAP represents a frequent event during canine epidermal tumourigenesis, pointing to this protein as a potential therapeutic target for the treatment of CP and CSCC in dogs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinogênese/genética , Carcinoma de Células Escamosas/veterinária , Doenças do Cão/genética , Epiderme/patologia , Papiloma/veterinária , Neoplasias Cutâneas/veterinária , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinoma de Células Escamosas/genética , Cães , Perfilação da Expressão Gênica/veterinária , Papiloma/genética , Transdução de Sinais , Neoplasias Cutâneas/genética , Análise Serial de Tecidos
4.
Toxicon ; 169: 25-33, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31421160

RESUMO

The hypothesis of this experiment is that mesenchymal stem cells (MSCs) are involved in the genesis of the bone metaplasia caused by Solanum glaucophyllum intoxication. We determined using liquid chromatography that 1 mL of plant extract contained 3.8 µl of 1,25(OH)2D3. The ability of 100 µL, 1 mL and 5 mL of extract/L, containing 1 nM (0.4 µg/L), 10 nM (4 µg/L) and 50 nM (20 µg/L) of 1,25(OH)2D3, respectively, in inducing the osteogenic differentiation in bone marrow MSCs from rats was tested. At the concentrations of 1 and 5 mL of extract/L of culture medium without osteogenesis-inducing factors, the plant extract induced the osteogenic differentiation of the MSCs, as was evidenced by the greater synthesis of mineralized matrix. At the higher concentration (5 mL of extract/L), an increase in the relative expression of BMP-2 gene was observed. It was concluded that rat bone marrow MSC culture is a good model for studying the effects of the S. glaucophyllum extract on the osteogenic differentiation of undifferentiated cells. Also, S. glaucophyllum extracts containing 10 nM (4 µg/L) and 50 nM (20 µg/L) of 1,25(OH)2D3 induce the osteogenic differentiation of MSCs, suggesting that this is one of the mechanisms by which S. glaucophyllum causes bone metaplasia.


Assuntos
Células-Tronco Mesenquimais/efeitos dos fármacos , Metaplasia/induzido quimicamente , Extratos Vegetais/toxicidade , Solanum glaucophyllum/química , Animais , Proteína Morfogenética Óssea 2/metabolismo , Osso e Ossos/patologia , Cromatografia Líquida , Sialoproteína de Ligação à Integrina/metabolismo , Células-Tronco Mesenquimais/patologia , Osteopontina/metabolismo , Ratos , Testes de Toxicidade
5.
Braz. j. morphol. sci ; 18(1): 35-39, jan.-jun. 2001. ilus, tab
Artigo em Inglês | LILACS | ID: lil-322539

RESUMO

The uropygial gland of Columba livia was studied using standard histochemical and lectin-histochemical methods. Acidic mucins, neutral lipids, glycolipids and phospholipids were normal secretion. There were no differences between males and females. The uropygial secretion was a mixture of lipid and carbohydrate compounds, the composition of which varied according to the stage of cellular differentiation and secretion formation.


Assuntos
Animais , Glândulas Sebáceas/química , Lectinas , Aves , Glândulas Sebáceas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...