Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Biomed Pharmacother ; 177: 117047, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959604

RESUMO

Cancer remains a leading cause of death, with increasing incidence. Conventional treatments offer limited efficacy and cause significant side effects, hence novel drugs with improved pharmacological properties and safety are required. Silvestrol (SLV) is a flavagline derived from some plants of the Aglaia genus that has shown potent anticancer effects, warranting further study. Despite its efficacy in inhibiting the growth of several types of cancer cells, SLV is characterized by an unfavorable pharmacokinetics that hamper its use as a drug. A consistent research over the recent years has led to develop novel SLV derivatives with comparable pharmacodynamics and an ameliorated pharmacokinetic profile, demonstrating potential applications in the clinical management of cancer. This comprehensive review aims to highlight the most recent data available on SLV and its synthetic derivatives, addressing their pharmacological profile and therapeutic potential in cancer treatment. A systematic literature review of both in vitro and in vivo studies focusing on anticancer effects, pharmacodynamics, and pharmacokinetics of these compounds is presented. Overall, literature data highlight that rationale chemical modifications of SLV are critical for the development of novel drugs with high efficacy on a broad variety of cancers and improved bioavailability in vivo. Nevertheless, SLV analogues need to be further studied to better understand their mechanisms of action, which can be partially different to SLV. Furthermore, clinical research is still required to assess their efficacy in humans and their safety.

2.
Heliyon ; 10(12): e32580, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39005928

RESUMO

Organophosphates constitute a major class of pesticides widely employed in agriculture to manage insect pests. Their toxicity is attributed to their ability to inhibit the functioning of acetylcholinesterase (AChE), an essential enzyme for normal nerve transmission. Organophosphates, especially chlorpyrifos, have been a key component of the integrated pest management (IPM) in onions, effectively controlling onion maggot Delia antiqua, a severe pest of onions. However, the growing concerns over the use of this insecticide on human health and the environment compelled the need for an alternative organophosphate and a potential microbial agent for bioremediation to mitigate organophosphate pesticide pollution. In the present study, chloropyrifos along with five other organophosphate insecticides, phosmet, primiphos-methyl, isofenphos, iodofenphos and tribuphos, were screened against the target protein AChE of D. antiqua using molecular modeling and docking techniques. The results revealed that iodofenphos showed the best interaction, while tribuphos had the lowest interaction with the AChE based on comparative binding energy values. Further, protein-protein interaction analysis conducted using the STRING database and Cytoscap software revealed that AChE is linked with a network of 10 different proteins, suggesting that the function of AChE is disrupted through interaction with insecticides, potentially leading to disruption within the network of associated proteins. Additionally, an in silico study was conducted to predict the binding efficiency of two organophosphate degrading enzymes, organophosphohydrolase (OpdA) from Agrobacterium radiobacter and Trichoderma harzianum paraoxonase 1 like (ThPON1-like) protein from Trichoderma harzianum, with the selected insecticides. The analysis revealed their potential to degrade the pesticides, offering a promising alternative before going for cumbersome onsite remediation.

3.
Microb Ecol ; 87(1): 83, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888737

RESUMO

Bacillus species appearas the most attractive plant growth-promoting rhizobacteria (PGPR) and alternative to synthetic chemical pesticides. The present study examined the antagonistic potential of spore forming-Bacilli isolated from organic farm soil samples of Allahabad, India. Eighty-seven Bacillus strains were isolated and characterized based on their morphological, plant growth promoting traits and molecular characteristics. The diversity analysis used 16S-rDNA, BOX-element, and enterobacterial repetitive intergenic consensus. Two strains, PR30 and PR32, later identified as Bacillus sp., exhibited potent in vitro antagonistic activity against Ralstonia solanaceorum. These isolates produced copious amounts of multiple PGP traits, such as indole-3-acetic acid (40.0 and 54.5 µg/mL), phosphate solubilization index (PSI) (4.4 and 5.3), ammonia, siderophore (3 and 4 cm), and 1-aminocyclopropane-1-carboxylate deaminase (8.1and 9.2 µM/mg//h) and hydrogen cyanide. These isolates were subjected to the antibiotic sensitivity test. The two potent isolates based on the higher antagonistic and the best plant growth-promoting ability were selected for plant growth-promoting response studies in tomatoe, broccoli, and chickpea. In the pot study, Bacillus subtilis (PR30 and PR31) showed significant improvement in seed germination (27-34%), root length (20-50%), shoot length (20-40%), vigor index (50-75%), carotenoid content (0.543-1.733), and lycopene content (2.333-2.646 mg/100 g) in tomato, broccoli, and chickpea. The present study demonstrated the production of multiple plant growth-promoting traits by the isolates and their potential as effective bioinoculants for plant growth promotion and biocontrol of phytopathogens.


Assuntos
Bacillus , Biodiversidade , Microbiologia do Solo , Bacillus/isolamento & purificação , Bacillus/genética , Bacillus/metabolismo , Índia , Raízes de Plantas/microbiologia , Cicer/microbiologia , Cicer/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Solanum lycopersicum/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Rizosfera , Filogenia , Antibiose , Sideróforos/metabolismo , Ácidos Indolacéticos/metabolismo
4.
Chem Biodivers ; 21(7): e202400208, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38713365

RESUMO

Solanum nigrum is a common weed in arable land, while being used in traditional medicine around the world due to its remarkable levels of valuable secondary metabolites. Agronomic and biological techniques can alter the production of a specific metabolite by influencing plant growth and metabolism. The effects of colonization with three arbuscular mycorrhizal fungi (AMF), including Funneliformis mosseae, Rhizoglomus intraradices, and Rhizoglomus fasciculatum, on the chemical composition of S. nigrum fruits were evaluated by gas chromatography-mass spectrometry (GC-MS) analysis. More than 100 different chemical constituents were evaluated by GC-MS. Our study revealed that the levels of phenols (quinic acid), benzenes (hydroquinone), sulfur-containing compounds, lactone and carboxylic acids were improved by R. intraradices. In contrast, hydroxymethylfurfural increased by 68 % in R. fasciculatum inoculated with uninoculated S. nigrum plants, and this species was also the most efficient in inducing sugar compounds (D-galactose, lactose, and melezitose). Our results suggest that AMF colonization is an effective biological strategy that can alter the chemical composition and improve the medicinal properties of S. nigrum.


Assuntos
Frutas , Micorrizas , Solanum nigrum , Simbiose , Solanum nigrum/química , Solanum nigrum/metabolismo , Frutas/química , Frutas/metabolismo , Frutas/microbiologia , Micorrizas/metabolismo , Micorrizas/química , Cromatografia Gasosa-Espectrometria de Massas , Metabolismo Secundário , Glomeromycota/metabolismo , Glomeromycota/química , Glomeromycota/fisiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-38800950

RESUMO

Objective: Cannabis sativa is the most used recreational drug worldwide. In recent years, there has been a growing interest in the potential therapeutic benefits of medicinal cannabis to treat a variety of psychiatric and neurological conditions. In particular, cannabidiol (CBD), a nonpsychoactive cannabis constituent, has been investigated for its potential prosocial effects on behavior, although the molecular mechanisms underlying this effect are still largely unknown. The aim of this study was to investigate the effect of a C. sativa oil CBD rich (CS oil) on social interaction and ultrasonic communication in mice. Study Design: Twenty-seven adult male mice (B6; 129P F2) were treated daily with vehicle or CS oil for 2 weeks. At Day 14, mice were tested for behavior (social interaction test and ultrasonic communication). Forty minutes before the behavioral tests, mice were exposed to intranasal treatment with vehicle or the oxytocin receptor antagonist, L-371,257. After behavioral tests, VH- and CS oil-treated mice were sacrificed, RNA was extracted from the hypothalamus and used for quantitative Real Time-PCR experiments. Results: We found that a 2-week treatment with the CS oil on mice exerted a prosocial effect associated with an increase in ultrasonic vocalizations. These effects were inhibited by pretreating mice with an oxytocin receptor antagonist. In addition, at the molecular level, we found that CS oil treatment caused a significant increase in oxytocin and a decrease in oxytocin receptor expression levels in the brain hypothalamus. Conclusion: Our results suggest that CS oil promotes social behavior by acting on oxytocin pathway.

6.
Microb Ecol ; 87(1): 60, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630182

RESUMO

Microorganisms produce siderophores, which are low-molecular-weight iron chelators when iron availability is limited. The present analyzed the role of LNPF1 as multifarious PGPR for improving growth parameters and nutrient content in peanut and soil nutrients. Such multifarious PGPR strains can be used as effective bioinoculants for peanut farming. In this work, rhizosphere bacteria from Zea mays and Arachis hypogaea plants in the Salem area of Tamil Nadu, India, were isolated and tested for biochemical attributes and characteristics that stimulate plant growth, such as the production of hydrogen cyanide, ammonia (6 µg/mL), indole acetic acid (76.35 µg/mL), and solubilizing phosphate (520 µg/mL). The 16S rRNA gene sequences identified the isolate LNPF1 as Pseudomonas fluorescens with a similarity percentage of 99% with Pseudomonas sp. Isolate LNPF1 was evaluated for the production of siderophore. Siderophore-rich supernatant using a Sep Pack C18 column and Amberlite-400 Resin Column (λmax 264) produced 298 mg/L and 50 mg/L of siderophore, respectively. The characterization of purified siderophore by TLC, HPLC, FTIR, and 2D-NMR analysis identified the compound as desferrioxamine, a hydroxamate siderophore. A pot culture experiment determined the potential of LNPF1 to improve iron and oil content and photosynthetic pigments in Arachis hypogaea L. and improve soil nutrient content. Inoculation of A. hypogea seeds with LNPF1 improved plant growth parameters such as leaf length (60%), shoot length (22%), root length (54.68%), fresh weight (47.28%), dry weight (37%), and number of nuts (66.66) compared to the control (untreated seeds). This inoculation also improved leaf iron content (43.42), short iron content (38.38%), seed iron (46.72%), seed oil (31.68%), carotenoid (64.40%), and total chlorophyll content (98.%) compared to control (untreated seeds). Bacterized seeds showed a substantial increase in nodulation (61.65%) and weight of individual nodules (95.97) vis-à-vis control. The results of the present study indicated that P. fluorescens might be utilized as a potential bioinoculant to improve growth, iron content, oil content, number of nuts and nodules of Arachishypogaea L., and enrich soil nutrients.


Assuntos
Arachis , Pseudomonas fluorescens , Desferroxamina , Índia , RNA Ribossômico 16S/genética , Nutrientes , Sideróforos , Ferro , Solo
7.
Chem Biodivers ; 21(4): e202400026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38372467

RESUMO

Ruta chalepensis L. is a versatile herb used in culinary arts and traditional medicine. The study aimed to determine the chemical composition of an ethanolic extract from R. chalepensis and the total phenolic and flavonoid content. Additionally, the extracts' antimicrobial and antioxidant activities were tested. The disc diffusion method and minimum inhibitory concentration (MIC) were used to test the antibacterial properties on four types of bacteria: Escherichia coli, Proteus penneri, Bacillus cereus, and Staphylococcus aureus. A colorimetric assay was used to evaluate the total phenolic and flavonoid content, and the DPPH method was used to assess the antioxidant activity. The phytochemical constituents were determined using LC-MS/MS. The results indicated that R. chalepensis ethanolic extract had 34 compounds, and the predominant compounds were quercetin (9.2 %), myricetin (8.8 %), and camphene (8.0 %). Moreover, the extract had a good level of polyphenols and flavonoids, as demonstrated by inhibiting free radicals (DPPH) (IC50 was 41.2±0.1). Also, the extract exhibited robust antimicrobial activity against P. penneri and S. aureus with an MIC of 12.5 and 25.0 µg/mL, respectively. In conclusion, the results suggest that the R. chalepensis ethanolic extract has good antioxidant and antibacterial properties that could be utilized to develop new antibacterial agents.


Assuntos
Anti-Infecciosos , Ruta , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Cromatografia Líquida , Etanol , Flavonoides/química , Flavonoides/farmacologia , Fenóis/farmacologia , Fenóis/análise , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ruta/química , Staphylococcus aureus , Espectrometria de Massas em Tandem , Polifenóis/química , Polifenóis/farmacologia , Quercetina/química , Quercetina/isolamento & purificação , Quercetina/farmacologia
8.
Toxicol Rep ; 12: 253-259, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38379553

RESUMO

Organophosphate insecticide spray poses potential threat of contamination of environmental components their accumulation in aquatic organisms. Although various physiological deficits associated with their exposure in fishes are documented, yet their retention in their edible muscle tissues has been poorly studied. In this context, the study was undertaken to ascertain the bioaccumulation of two organophosphate insecticide compounds (dimethoate and chlorpyrifos) in the muscles of juvenile Cyprinus carpio. The study could provide insight into the risks to human health associated with consuming contaminated fish flesh. The fishes exposed to various concentrations of dimethoate and chlorpyrifos in-vivo for 96 to ascertain the uptake and retention of these insecticides in the muscle. Results indicated that fish muscles accumulated the residues at all the concentrations with the recovery of 2.99% (0.032 ppm) of dimethoate exposed to LC50 concentrations. In contrast, the chlorpyrifos residues were found Below the Detection Level (BDL) in the fishes exposed to LC50 concentrations. The percentage bioaccumulation of dimethoate in fish muscle was 88.10%, and that of chlorpyrifos was BDL. The bio-concentration factor was dose-dependent and increased with increasing doses of both insecticides. The study invites attention to human health risk assessment in the regions where contaminated fish are consumed without scientific supervision.

9.
Plants (Basel) ; 12(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38068598

RESUMO

Phytophagous insects pose a significant threat to global crop yield and food security. The need for increased agricultural output while reducing dependence on harmful synthetic insecticides necessitates the implementation of innovative methods. The utilization of CRISPR-Cas (Clustered regularly interspaced short palindromic repeats) technology to develop insect pest-resistant plants is believed to be a highly effective approach in reducing production expenses and enhancing the profitability of farms. Insect genome research provides vital insights into gene functions, allowing for a better knowledge of insect biology, adaptability, and the development of targeted pest management and disease prevention measures. The CRISPR-Cas gene editing technique has the capability to modify the DNA of insects, either to trigger a gene drive or to overcome their resistance to specific insecticides. The advancements in CRISPR technology and its various applications have shown potential in developing insect-resistant varieties of plants and other strategies for effective pest management through a sustainable approach. This could have significant consequences for ensuring food security. This approach involves using genome editing to create modified insects or crop plants. The article critically analyzed and discussed the potential and challenges associated with exploring and utilizing CRISPR-Cas technology for reducing insect pest pressure in crop plants.

10.
Plants (Basel) ; 12(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37836097

RESUMO

The aim of the current research is to evaluate the allelopathic activity of fifty grass genotypes from different species and to identify phenolic compounds in the genotypes that have the highest allelopathic activity and inhibitory effect on Eruca sativa L. (Rocket). Aqueous extract was prepared from the leaves of grass genotypes in different concentrations and its effect on germination and growth of E. sativa L. was measured. According to the results, the type of genotype and the concentration of the extract significantly decreased the percentage of germination, hypocotyl length, radicle length, and dry weight of E. sativa L. seedlings. Increasing the concentration of the extract resulted in a decrease in germination and growth of seedlings. The genotypes of Festulolium (Festulolium) (GR 5009, GR 1692, GR 5004) had the most inhibitory effect on the growth of E. sativa L. Also, among the genotypes studied, two genotypes (DG-M) and (DG-P) of Dactylis glomerata L. (orchardgrass) species showed the least allelopathic activity. The results of HPLC-MS indicated nine phenolic compounds including caffeic acid, syringic acid, vanillic acid, p-coumaric acid, ferulic acid, apigenin acid, chlorogenic acid, 4-hydroxybenzoic acid, and gallic acid. The phenolic compound most present in the aqueous extract was caffeic acid. However, phenolic compounds derived from Festulolium genotypes showed the greatest allelopathic action on the growth parameters of E. sativa L. The aqueous extracts of the Festulolium genotypes can be considered valid systems of sustainable weed control thanks to the phytocomplex rich in phenols.

11.
Plants (Basel) ; 12(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37836255

RESUMO

To map the genomic regions and control chlorophyll fluorescence attributes under normal, salinity-, and drought-stress conditions in barley (Hordeum vulgare L.) at the seedling stage, an experiment was conducted in 2019-2020 using 106 F8 lines resulting from the cross between Badia × Kavir. Initially, the different chlorophyll fluorescence parameters were evaluated. Under drought stress, the highest decrease was related to REo/CSm (59.56%), and the highest increase was related to dV/dto (77.17%). Also, under salinity stress, the highest decrease was related to Fv/Fo (59.56%), and the highest increase was related to DIo/RC (77.17%). Linkage maps were prepared using 152 SSR polymorphic markers, 72 ISSR alleles, 7 IRAP alleles, 29 CAAT alleles, 27 Scot alleles, and 15 iPBS alleles. The obtained map accounted for 999.2 centi-Morgans (cM) of the barley genome length (92% of the whole barley genome). The results indicated the importance of chromosomes 3, 2, and 7 in controlling ABS/CSm, Area, ETo/CSm, Fm, Fv, and ETo/RC under drought stress. qEToRCD-7, as a major QTL, controlled 18.3% of ETo/RC phenotypic variation under drought stress. Under salinity stress, the regions of chromosomes 2 and 7 (102 cM and 126 cM) controlled the parameters ABS/CSo, Fm, Fo, Fv, TRo/SCo, Area, ETo/CSm, and ETo/CSo. The results showed that chlorophyll fluorescence is an important parameter in the study of drought and salinity effects on barley. This is the first report of the investigation of changes in the genetic structure of quantitative genes controlling the fluorescence parameters associated with barley response to drought and salinity stresses in the Iranian barley RILs population. According to the obtained results, it is possible to use HVPLASC1B and EBmac0713 in normal conditions, ISSR21-2 and ISSR30-4 in drought conditions, and Bmac0047, Scot5-B, CAAT6-C, and ISSR30iPBS2076-4 in saline stress conditions to select genotypes with higher photosynthetic capacity in marker-assisted selection programs.

12.
Life (Basel) ; 13(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37109404

RESUMO

The use of growth-stimulating signals to increase the tolerance of plants to water deficits can be an important strategy in the production of plants in dry areas. Therefore, a split-plot experiment with three replications was conducted to evaluate the effects of sodium nitroprusside (SNP) application rate as an NO donor (0, 100, and 200 µM) on the growth and yield parameters of Silybum marianum L. (S. marianum) under different irrigation cut-off times (control, irrigation cut-off from stem elongation, and anthesis). The results of this study showed that with increasing drought severity, leaf RWC, proline content and capitula per plant, 1000 grain weight, plant height, branch per plant, capitula diameter, and the biological and grain yield of S. marianum decreased significantly, whereas the number of grains per capitula increased compared with the control. Also, by irrigation cut-off from the stem elongation stage, the density of leaf stomata at the bottom and top epidermis increased by 64% and 39%, respectively, and the length of the stomata at the bottom epidermis of the leaf decreased up to 28%. In contrast, the results of this experiment showed that the exogenous application of nitric oxide reduced the negative effects of irrigation cut-off, such that the application of 100 µM SNP enhanced RWC content (up to 9%), proline concentration (up to 40%), and grain (up to 34%) and biological (up to 44%) yields in plants under drought stress compared with non-application of SNP. The decrease in the number of capitula per plant and capitula diameter was also compensated by foliar application of 100 µM SNP under stress conditions. In addition, exogenous NO changed the behavior of the stomata during the period of dehydration, such that plants treated with SNP showed a decrease in the stomatal density of the leaf and an increase in the length of the stomata at the leaf bottom epidermis. These results indicate that SNP treatment, especially at 100 µM, was helpful in alleviating the deleterious effects of water deficiency and enhancing the tolerance of S. marianum to withholding irrigation times.

13.
Life (Basel) ; 13(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36836736

RESUMO

In this study, phytochemicals extracted from three different Achillea genera were identified and analyzed to be screened for their interactions with the SARS-CoV-2 main protease. In particular, the antiviral potential of these natural products against the SARS-CoV-2 main protease was investigated, as was their effectiveness against the SARS-CoV-1 main protease as a standard (due to its high similarity with SARS-CoV-2). These enzymes play key roles in the proliferation of viral strains in the human cytological domain. GC-MS analysis was used to identify the essential oils of the Achillea species. Chemi-informatics tools, such as AutoDock 4.2.6, SwissADME, ProTox-II, and LigPlot, were used to investigate the action of the pharmacoactive compounds against the main proteases of SARS-CoV-1 and SARS-CoV-2. Based on the binding energies of kessanyl acetate, chavibetol (m-eugenol), farnesol, and 7-epi-ß-eudesmol were localized at the active site of the coronaviruses. Furthermore, these molecules, through hydrogen bonding with the amino acid residues of the active sites of viral proteins, were found to block the progression of SARS-CoV-2. Screening and computer analysis provided us with the opportunity to consider these molecules for further preclinical studies. Furthermore, considering their low toxicity, the data may pave the way for new in vitro and in vivo research on these natural inhibitors of the main SARS-CoV-2 protease.

14.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674849

RESUMO

The need to identify effective therapies for the treatment of psychiatric disorders is a particularly important issue in modern societies. In addition, difficulties in finding new drugs have led pharmacologists to review and re-evaluate some past molecules, including psychedelics. For several years there has been growing interest among psychotherapists in psilocybin or lysergic acid diethylamide for the treatment of obsessive-compulsive disorder, of depression, or of post-traumatic stress disorder, although results are not always clear and definitive. In fact, the mechanisms of action of psychedelics are not yet fully understood and some molecular aspects have yet to be well defined. Thus, this review aims to summarize the ethnobotanical uses of the best-known psychedelic plants and the pharmacological mechanisms of the main active ingredients they contain. Furthermore, an up-to-date overview of structural and computational studies performed to evaluate the affinity and binding modes to biologically relevant receptors of ibogaine, mescaline, N,N-dimethyltryptamine, psilocin, and lysergic acid diethylamide is presented. Finally, the most recent clinical studies evaluating the efficacy of psychedelic molecules in some psychiatric disorders are discussed and compared with drugs already used in therapy.


Assuntos
Alucinógenos , Ibogaína , Humanos , Alucinógenos/farmacologia , Alucinógenos/uso terapêutico , Dietilamida do Ácido Lisérgico/uso terapêutico , Dietilamida do Ácido Lisérgico/farmacologia , Neurofarmacologia , Mescalina
15.
Eur J Neurosci ; 57(12): 1954-1965, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36382587

RESUMO

The growing interest on the therapeutic potential against neurodegeneration of Cannabis sativa extracts, and of phytocannabinoids in particular, is paralleled by a limited understanding of the undergoing biochemical pathways in which these natural compounds may be involved. Computational tools are nowadays commonly enrolled in the drug discovery workflow and can guide the investigation of macromolecular targets for such molecules. In this contribution, in silico techniques have been applied to the study of C. sativa constituents at various extents, and a total of seven phytocannabinoids and four terpenes were considered. On the side of ligand-based virtual screening, physico-chemical descriptors were computed and evaluated, highlighting the phytocannabinoids possessing suitable drug-like properties to potentially target the central nervous system. Our previous findings and literature data prompted us to investigate the interaction of these molecules with phosphodiesterases (PDEs), a family of enzymes being studied for the development of therapeutic agents against neurodegeneration. Among the compounds, structure-based techniques such as docking and molecular dynamics (MD), highlighted cannabidiol (CBD) as a potential and selective PDE9 ligand, since a promising calculated binding energy value (-9.1 kcal/mol) and a stable interaction in the MD simulation timeframe were predicted. Additionally, PDE9 inhibition assay confirmed the computational results, and showed that CBD inhibits the enzyme in the nanomolar range in vitro, paving the way for further development of this phytocannabinoid as a therapeutic option against neurodegeneration.


Assuntos
Canabidiol , Canabidiol/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Ligantes , Terpenos , Diester Fosfórico Hidrolases
16.
Curr Issues Mol Biol ; 44(8): 3364-3377, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36005128

RESUMO

Helix aspersa is a species of land snail belonging to the Helicidae family, widespread in the Mediterranean and continental area up to Northern Europe. In some areas it is appreciated as a food, but is mostly considered a parasite of gardens and cultivated fields. The mucus of Helix aspersa has found multiple applications in the cosmetic and health fields. In the present study, we investigated for the first time the angiogenetic properties of purified extracts from Helix aspersa using a transgenic zebrafish line Tg (kdrl:EGFP). The angiogenesis induced by purified snail extracts was demonstrated by their capability to increase the three well-established parameters of angiogenesis: generation of intersegmental vessels, modeling of caudal venous plexus, and formation of sub-intestinal venous plexus. The effects appeared to be mediated by the vascular endothelial growth factor (VEGF) pathway, being prevented by pretreatment of embryos with the selective VEGF receptor antagonist SU5416, and supported by the increased VEGF mRNA levels found in snail-extract-treated embryos. Insufficient vascular supply is underlined by low VEGF signaling, primarily because of its indispensable role in preventing capillary loss. Our findings might have a pharmacological impact by counteracting VEGF hypofunction and promoting angiogenesis to maintain adequate microvascular and vascular density in normal and suffering tissues and organs.

17.
Nutrients ; 14(14)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35889791

RESUMO

Due to the high prevalence of obesity and type 2 diabetes, adipogenesis dysfunction and metabolic disorders are common features in the elderly population. Thus, the identification of novel compounds with anti-adipogenic and lipolytic effects is highly desirable to reduce diabetes complications. Plants represent an important source of bioactive compounds. To date, the antidiabetic potential of several traditional plants has been reported, among which Ficus carica L. is one of the most promising. Considering that plant metabolome changes in response to a number of factors including seasonality, the aim of this study was to evaluate whether Ficus carica leaves extracts collected in autumn (FCa) and spring (FCs) differently modulate lipid metabolism and adipogenesis in 3T3-L1 adipocytes. The 1H-NMR profile of the extracts showed that FCs have a higher content of caffeic acid derivatives, glucose, and sucrose than FCa. In contrast, FCa showed a higher concentration of malic acid and furanocoumarins, identified as psoralen and bergapten. In vitro testing showed that only FCa treatments were able to significantly decrease the lipid content (Ctrl vs. FCa 25 µg/mL, 50 µg/mL and 80 µg/mL; p < 0.05, p < 0.01 and p < 0.001, respectively). Furthermore, FCa treatments were able to downregulate the transcriptional pathway of adipogenesis and insulin sensitivity in 3T3-L1 adipocytes. In more detail, FCa 80 µg/mL significantly decreased the gene expression of PPARγ (p < 0.05), C/EBPα (p < 0.05), Leptin (p < 0.0001), adiponectin (p < 0.05) and GLUT4 (p < 0.01). In conclusion, this study further supports an in-depth investigation of F. carica leaves extracts as a promising source of active compounds useful for targeting obesity and diabetes.


Assuntos
Adipogenia , Diabetes Mellitus Tipo 2 , Ficus , Metabolismo dos Lipídeos , Extratos Vegetais , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Camundongos , Obesidade/metabolismo , PPAR gama/metabolismo , Extratos Vegetais/farmacologia , Estações do Ano
18.
BioTech (Basel) ; 11(2)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35822781

RESUMO

Drought is one of the most important threats to plants and agriculture. Here, the effects of four drought levels (90%, 55%, 40%, and 25% field capacity) on the relative water content (RWC), chlorophyll and carotenoids levels, and mRNA gene expression of metabolic enzymes in Thymus vulgaris (as sensitive to drought) and Thymus kotschyanus (as a drought-tolerant species) were evaluated. The physiological results showed that the treatment predominantly affected the RWC, chlorophyll, and carotenoids content. The gene expression analysis demonstrated that moderate and severe drought stress had greater effects on the expression of histone deacetylase-6 (HDA-6) and acetyl-CoA synthetase in both Thymus species. Pyruvate decarboxylase-1 (PDC-1) was upregulated in Thymus vulgaris at high drought levels. Finally, succinyl CoA ligase was not affected by drought stress in either species. Data confirmed water stress is able to alter the gene expression of specific enzymes. Furthermore, our results suggest that PDC-1 expression is independent from HDA-6 and the increased expression of ACS can be due to the activation of new pathways involved in carbohydrate production.

19.
BioTech (Basel) ; 11(2)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35822789

RESUMO

The main aim of this study was to evaluate the yield and compliance of selected Iranian garlic (Allium sativum L.) cultivars, including Tuyserkan (TSN), Heydareh (HDH), Mouien (MUN), and Taroom (TRM), during two growing seasons. The TRM cultivar germination rate is higher than the other cultivars studied. The TRM cultivars have quite remarkable values for the dry weight, fresh weight, stem diameter, and the number of leaves present. The fresh weight and dry weight of the TRM cultivar for the second year are 33.8 t/ha and 16.7 t/ha, respectively. However, on average, the HDH cultivar is the tallest plant in the experiments. Average pyruvic acid content in fresh samples of the TRM and HDH cultivars is 78 µm/gfw and 69.3 µm/gfw, respectively. It is observed that there are remarkable differences in the level of pyruvic acid between the different cultivars. The growth, development, and yield of plants are highly dependent on their genetic characteristics; in this experiment, the TRM cultivar shows a good yield (16.7 t/ha), and the evaluated characteristics improve compared to the other cultivars studied, which could be due to the high compatibility of this cultivar to the environmental conditions of the study. The excellent performance on the yield of TRM makes this cultivar more appreciable on a commercial level.

20.
Plants (Basel) ; 11(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684179

RESUMO

A species of Orobanche was observed on spiny cocklebur (Xanthium spinosum) for the first time in Iran and tentatively was named IR-Iso.This study was conducted to make a phylogenetic analysis of the Orobanche using 5.8S rRNA region sequences, and also to better understand its sequence pattern. The full-length ITS1-ITS2 region of the new Orobanche isolate was PCR-amplified from the holoparasitic plant parasitizing X. spinosum. Sequences of the amplicons from the isolate were 100% identical but differed by 5.6-6.7% from most homologous GenBank accessions to 37.9% divergence from distant species. The analysis of the molecular variance showed that variation between-population (61.9%, SE = 0.04) was larger than within-population. Neighbor-joining analysis placed the Iranian isolate in the same clade as most of the Orobanche and Phelipanche species. The isolate was more closely related to Orobanche aegyptiaca (from China), and this was confirmed by using a structure analysis. However, complementary analyses showed that the Iranian isolate has a unique nucleotide substitution pattern, and hence it was considered as an ecotype of O. aegyptiaca (ecotype Alborzica). In this paper we report on the association between this new ecotype of Orobanche and X. spinosum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...