Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 3(3): 420-430, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36923707

RESUMO

Multiple myeloma is characterized by clonal proliferation of plasma cells that accumulate preferentially in the bone marrow (BM). The tumor microenvironment is one of the leading factors that promote tumor progression. Neutrophils and monocytes are a major part of the BM tumor microenvironment, but the mechanism of their contribution to multiple myeloma progression remains unclear. Here, we describe a novel mechanism by which S100A8/S100A9 proteins produced by BM neutrophils and monocytes promote the expansion of megakaryocytes supporting multiple myeloma progression. S100A8/S100A9 alone was not sufficient to drive megakaryopoiesis but markedly enhanced the effect of thrombopoietin, an effect that was mediated by Toll-like receptor 4 and activation of the STAT5 transcription factor. Targeting S100A9 with tasquinimod as a single agent and in combination with lenalidomide and with proteasome inhibitors has potent antimyeloma effect that is at least partly independent of the adaptive immune system. This newly identified axis of signaling involving myeloid cells and megakaryocytes may provide a new avenue for therapeutic targeting in multiple myeloma. Significance: We identified a novel mechanism by which myeloid cells promote myeloma progression independently of the adaptive immune system. Specifically, we discovered a novel role of S100A8/S100A9, the most abundant proteins produced by neutrophils and monocytes, in regulation of myeloma progression via promotion of the megakaryocyte expansion and angiogenesis. Tasquinimod, an inhibitor of S100A9, has potent antimyeloma effects as a single agent and in combination with lenalidomide and with proteasome inhibitors.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Megacariócitos/metabolismo , Lenalidomida , Inibidores de Proteassoma , Calgranulina B/metabolismo , Calgranulina A/metabolismo , Microambiente Tumoral
3.
Front Immunol ; 12: 619069, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108958

RESUMO

Natural killer (NK) cells are innate effector lymphocytes with strong antitumor effects against hematologic malignancies such as chronic lymphocytic leukemia (CLL). However, NK cells fail to control CLL progression on the long term. For effective lysis of their targets, NK cells use a specific cell-cell interface, known as the immunological synapse (IS), whose assembly and effector function critically rely on dynamic cytoskeletal changes in NK cells. Here we explored the role of CLL cell actin cytoskeleton during NK cell attack. We found that CLL cells can undergo fast actin cytoskeleton remodeling which is characterized by a NK cell contact-induced accumulation of actin filaments at the IS. Such polarization of the actin cytoskeleton was strongly associated with resistance against NK cell-mediated cytotoxicity and reduced amounts of the cell-death inducing molecule granzyme B in target CLL cells. Selective pharmacological targeting of the key actin regulator Cdc42 abrogated the capacity of CLL cells to reorganize their actin cytoskeleton during NK cell attack, increased levels of transferred granzyme B and restored CLL cell susceptibility to NK cell cytotoxicity. This resistance mechanism was confirmed in primary CLL cells from patients. In addition, pharmacological inhibition of actin dynamics in combination with blocking antibodies increased conjugation frequency and improved CLL cell elimination by NK cells. Together our results highlight the critical role of CLL cell actin cytoskeleton in driving resistance against NK cell cytotoxicity and provide new potential therapeutic point of intervention to target CLL immune escape.


Assuntos
Citoesqueleto de Actina/metabolismo , Citotoxicidade Imunológica , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Citoesqueleto de Actina/efeitos dos fármacos , Biomarcadores , Linhagem Celular Tumoral , Citotoxicidade Imunológica/efeitos dos fármacos , Imunofluorescência , Antígenos HLA-G/imunologia , Humanos , Sinapses Imunológicas/imunologia , Sinapses Imunológicas/metabolismo , Imunofenotipagem , Células Matadoras Naturais/efeitos dos fármacos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
4.
Front Immunol ; 11: 581119, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240268

RESUMO

Congenital defects of the immune system called primary immunodeficiency disorders (PID) describe a group of diseases characterized by a decrease, an absence, or a malfunction of at least one part of the immune system. As a result, PID patients are more prone to develop life-threatening complications, including cancer. PID currently include over 400 different disorders, however, the variety of PID-related cancers is narrow. We discuss here reasons for this clinical phenotype. Namely, PID can lead to cell intrinsic failure to control cell transformation, failure to activate tumor surveillance by cytotoxic cells or both. As the most frequent tumors seen among PID patients stem from faulty lymphocyte development leading to leukemia and lymphoma, we focus on the extensive genomic alterations needed to create the vast diversity of B and T lymphocytes with potential to recognize any pathogen and why defects in these processes lead to malignancies in the immunodeficient environment of PID patients. In the second part of the review, we discuss PID affecting tumor surveillance and especially membrane trafficking defects caused by altered exocytosis and regulation of the actin cytoskeleton. As an impairment of these membrane trafficking pathways often results in dysfunctional effector immune cells, tumor cell immune evasion is elevated in PID. By considering new anti-cancer treatment concepts, such as transfer of genetically engineered immune cells, restoration of anti-tumor immunity in PID patients could be an approach to complement standard therapies.


Assuntos
Leucemia de Células B/etiologia , Linfoma de Células B/etiologia , Doenças da Imunodeficiência Primária/complicações , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/imunologia , Linfócitos B/imunologia , Linfócitos B/patologia , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/imunologia , Reparo do DNA/genética , Reparo do DNA/imunologia , Exocitose/genética , Exocitose/imunologia , Instabilidade Genômica , Humanos , Sinapses Imunológicas/genética , Leucemia de Células B/genética , Leucemia de Células B/imunologia , Linfoma de Células B/genética , Linfoma de Células B/imunologia , Modelos Imunológicos , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/imunologia , Fatores de Risco , Evasão Tumoral/genética
5.
JCI Insight ; 5(17)2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32780726

RESUMO

New strategies are needed to enhance the efficacy of anti-programmed cell death protein antibody (anti-PD-1 Ab) in cancer. Here, we report that inhibiting palmitoyl-protein thioesterase 1 (PPT1), a target of chloroquine derivatives like hydroxychloroquine (HCQ), enhances the antitumor efficacy of anti-PD-1 Ab in melanoma. The combination resulted in tumor growth impairment and improved survival in mouse models. Genetic suppression of core autophagy genes, but not Ppt1, in cancer cells reduced priming and cytotoxic capacity of primed T cells. Exposure of antigen-primed T cells to macrophage-conditioned medium derived from macrophages treated with PPT1 inhibitors enhanced melanoma-specific killing. Genetic or chemical Ppt1 inhibition resulted in M2 to M1 phenotype switching in macrophages. The combination was associated with a reduction in myeloid-derived suppressor cells in the tumor. Ppt1 inhibition by HCQ, or DC661, induced cyclic GMP-AMP synthase/stimulator of interferon genes/TANK binding kinase 1 pathway activation and the secretion of interferon-ß in macrophages, the latter being a key component for augmented T cell-mediated cytotoxicity. Genetic Ppt1 inhibition produced similar findings. These data provide the rationale for this combination in melanoma clinical trials and further investigation in other cancers.


Assuntos
Inibidores Enzimáticos/farmacologia , Hidroxicloroquina/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Tioléster Hidrolases/antagonistas & inibidores , Animais , Anticorpos/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/uso terapêutico , Hidroxicloroquina/administração & dosagem , Hidroxicloroquina/uso terapêutico , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/farmacologia , Interferon beta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Melanoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Nucleotidiltransferases/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Células RAW 264.7 , Linfócitos T/imunologia , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Células Tumorais Cultivadas
6.
J Exp Med ; 216(9): 2150-2169, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31239386

RESUMO

We have identified a precursor that differentiates into granulocytes in vitro and in vivo yet belongs to the monocytic lineage. We have termed these cells monocyte-like precursors of granulocytes (MLPGs). Under steady state conditions, MLPGs were absent in the spleen and barely detectable in the bone marrow (BM). In contrast, these cells significantly expanded in tumor-bearing mice and differentiated to polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Selective depletion of monocytic cells had no effect on the number of granulocytes in naive mice but decreased the population of PMN-MDSCs in tumor-bearing mice by 50%. The expansion of MLPGs was found to be controlled by the down-regulation of Rb1, but not IRF8, which is known to regulate the expansion of PMN-MDSCs from classic granulocyte precursors. In cancer patients, putative MLPGs were found within the population of CXCR1+CD15-CD14+HLA-DR-/lo monocytic cells. These findings describe a mechanism of abnormal myelopoiesis in cancer and suggest potential new approaches for selective targeting of MDSCs.


Assuntos
Monócitos/patologia , Células Supressoras Mieloides/patologia , Neoplasias/patologia , Neutrófilos/patologia , Adulto , Idoso , Animais , Diferenciação Celular , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas de Ligação a Retinoblastoma/metabolismo
7.
Nat Immunol ; 19(11): 1236-1247, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30323345

RESUMO

Although neutrophils have been linked to the formation of the pre-metastatic niche, the mechanism of their migration to distant, uninvolved tissues has remained elusive. We report that bone marrow neutrophils from mice with early-stage cancer exhibited much more spontaneous migration than that of control neutrophils from tumor-free mice. These cells lacked immunosuppressive activity but had elevated rates of oxidative phosphorylation and glycolysis, and increased production of ATP, relative to that of control neutrophils. Their enhanced spontaneous migration was mediated by autocrine ATP signaling through purinergic receptors. In ectopic tumor models and late stages of cancer, bone marrow neutrophils demonstrated potent immunosuppressive activity. However, these cells had metabolic and migratory activity indistinguishable from that of control neutrophils. A similar pattern of migration was observed for neutrophils and polymorphonuclear myeloid-derived suppressor cells from patients with cancer. These results elucidate the dynamic changes that neutrophils undergo in cancer and demonstrate the mechanism of neutrophils' contribution to early tumor dissemination.


Assuntos
Quimiotaxia de Leucócito/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Idoso , Animais , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
8.
Cancer Res ; 78(19): 5644-5655, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30139814

RESUMO

The role of myeloid cells as regulators of tumor progression that significantly impact the efficacy of cancer immunotherapies makes them an attractive target for inhibition. Here we explore the effect of a novel, potent, and selective inhibitor of serine/threonine protein kinase casein kinase 2 (CK2) on modulating myeloid cells in the tumor microenvironment. Although inhibition of CK2 caused only a modest effect on dendritic cells in tumor-bearing mice, it substantially reduced the amount of polymorphonuclear myeloid-derived suppressor cells and tumor-associated macrophages. This effect was not caused by the induction of apoptosis, but rather by a block of differentiation. Our results implicated downregulation of CCAAT-enhancer binding protein-α in this effect. Although CK2 inhibition did not directly affect tumor cells, it dramatically enhanced the antitumor activity of immune checkpoint receptor blockade using anti-CTLA-4 antibody. These results suggest a potential role of CK2 inhibitors in combination therapies against cancer.Significance: These findings demonstrate the modulatory effects of casein kinase 2 inhibitors on myeloid cell differentiation in the tumor microenvironment, which subsequently synergize with the antitumor effects of checkpoint inhibitor CTLA4. Cancer Res; 78(19); 5644-55. ©2018 AACR.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/fisiologia , Imunoterapia , Células Mieloides/metabolismo , Neoplasias/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Antígeno CTLA-4/imunologia , Diferenciação Celular , Linhagem Celular Tumoral , Feminino , Sangue Fetal/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides , Transplante de Neoplasias , Microambiente Tumoral
9.
PLoS Genet ; 14(7): e1007485, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30001316

RESUMO

Plasmacytoid and conventional dendritic cells (pDCs and cDCs) arise from monocyte and dendritic progenitors (MDPs) and common dendritic progenitors (CDPs) through gene expression changes that remain partially understood. Here we show that the Ikaros transcription factor is required for DC development at multiple stages. Ikaros cooperates with Notch pathway activation to maintain the homeostasis of MDPs and CDPs. Ikaros then antagonizes TGFß function to promote pDC differentiation from CDPs. Strikingly, Ikaros-deficient CDPs and pDCs express a cDC-like transcriptional signature that is correlated with TGFß activation, suggesting that Ikaros is an upstream negative regulator of the TGFß pathway and a repressor of cDC-lineage genes in pDCs. Almost all of these phenotypes can be rescued by short-term in vitro treatment with γ-secretase inhibitors, which affects both TGFß-dependent and -independent pathways, but is Notch-independent. We conclude that Ikaros is a crucial differentiation factor in early dendritic progenitors that is required for pDC identity.


Assuntos
Diferenciação Celular/genética , Células Dendríticas/fisiologia , Fator de Transcrição Ikaros/metabolismo , Receptores Notch/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Transplante de Medula Óssea , Linhagem Celular , Regulação para Baixo , Células-Tronco Hematopoéticas/fisiologia , Fator de Transcrição Ikaros/genética , Camundongos , Camundongos Transgênicos , Monócitos/fisiologia , Mutação , Transdução de Sinais/genética , Regulação para Cima
10.
Curr Opin Immunol ; 51: 76-82, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29547768

RESUMO

In recent years, myeloid-derived suppressor cells (MDSC) have emerged as one of the major inhibitors of immune effector cell function in cancer. MDSC represent a heterogeneous population of largely immature myeloid cells that are characterized by a pathological state of activation and display potent immune suppressive activity. Two major subsets of MDSC have been identified: monocytic (M-MDSC) and polymorphonuclear (PMN-MDSC). PMN-MSDC share phenotypic and morphologic features with neutrophils, whereas M-MDSC are similar to monocytes and are characterized by high plasticity. Differentiation of M-MDSC to macrophages and dendritic cells is shaped by tumor microenvironment. In recent years, the mechanisms of this process start to emerge.


Assuntos
Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Animais , Biomarcadores , Diferenciação Celular/imunologia , Plasticidade Celular , Humanos , Monócitos/imunologia , Monócitos/metabolismo , Neoplasias/patologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fenótipo , Microambiente Tumoral/imunologia
11.
J Leukoc Biol ; 98(6): 913-22, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26337512

RESUMO

Myeloid-derived suppressor cells are a heterogeneous group of pathologically activated immature cells that play a major role in the negative regulation of the immune response in cancer, autoimmunity, many chronic infections, and inflammatory conditions, as well as in the regulation of tumor angiogenesis, tumor cell invasion, and metastases. Accumulation of myeloid-derived suppressor cells is governed by a network of transcriptional regulators that could be combined into 2 partially overlapping groups: factors promoting myelopoiesis and preventing differentiation of mature myeloid cells and factors promoting pathologic activation of myeloid-derived suppressor cells. In this review, we discuss the specific nature of these factors and their impact on myeloid-derived suppressor cell development.


Assuntos
Células Mieloides/imunologia , Mielopoese/imunologia , Neoplasias/imunologia , Neovascularização Patológica/imunologia , Fatores de Transcrição/imunologia , Transcrição Gênica/imunologia , Animais , Humanos , Células Mieloides/patologia , Invasividade Neoplásica , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica/patologia
12.
Sci Signal ; 7(317): ra28, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24643801

RESUMO

The Notch signaling pathway is activated in many cell types, but its effects are cell type- and stage-specific. In the immune system, Notch activity is required for the differentiation of T cell progenitors, but it is reduced in more mature thymocytes, in which Notch is oncogenic. Studies based on single-gene models have suggested that the tumor suppressor protein Ikaros plays an important role in repressing the transcription of Notch target genes. We used genome-wide analyses, including chromatin immunoprecipitation sequencing, to identify genes controlled by Notch and Ikaros in gain- and loss-of-function experiments. We found that Ikaros bound to and directly repressed the expression of most genes that are activated by Notch. Specific deletion of Ikaros in thymocytes led to the persistent expression of Notch target genes that are essential for T cell maturation, as well as the rapid development of T cell leukemias in mice. Expression of Notch target genes that are normally silent in T cells, but are activated by Notch in other cell types, occurred in T cells of mice genetically deficient in Ikaros. We propose that Ikaros shapes the timing and repertoire of the Notch transcriptional response in T cells through widespread targeting of elements adjacent to Notch regulatory sequences. These results provide a molecular framework for understanding the regulation of tissue-specific and tumor-related Notch responses.


Assuntos
Genes Supressores de Tumor , Fator de Transcrição Ikaros/fisiologia , Receptores Notch/metabolismo , Linfócitos T/metabolismo , Cromatina/metabolismo , Regulação da Expressão Gênica , Humanos , Fator de Transcrição Ikaros/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico , Transcrição Gênica
13.
Blood ; 116(25): 5443-54, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-20829372

RESUMO

The Notch pathway is frequently activated in T-cell acute lymphoblastic leukemias (T-ALLs). Of the Notch receptors, Notch1 is a recurrent target of gain-of-function mutations and Notch3 is expressed in all T-ALLs, but it is currently unclear how these receptors contribute to T-cell transformation in vivo. We investigated the role of Notch1 and Notch3 in T-ALL progression by a genetic approach, in mice bearing a knockdown mutation in the Ikaros gene that spontaneously develop Notch-dependent T-ALL. While deletion of Notch3 has little effect, T cell-specific deletion of floxed Notch1 promoter/exon 1 sequences significantly accelerates leukemogenesis. Notch1-deleted tumors lack surface Notch1 but express γ-secretase-cleaved intracellular Notch1 proteins. In addition, these tumors accumulate high levels of truncated Notch1 transcripts that are caused by aberrant transcription from cryptic initiation sites in the 3' part of the gene. Deletion of the floxed sequences directly reprograms the Notch1 locus to begin transcription from these 3' promoters and is accompanied by an epigenetic reorganization of the Notch1 locus that is consistent with transcriptional activation. Further, spontaneous deletion of 5' Notch1 sequences occurs in approximately 75% of Ikaros-deficient T-ALLs. These results reveal a novel mechanism for the oncogenic activation of the Notch1 gene after deletion of its main promoter.


Assuntos
Fator de Transcrição Ikaros/fisiologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Regiões Promotoras Genéticas/genética , Receptor Notch1/genética , Ativação Transcricional/fisiologia , Animais , Northern Blotting , Western Blotting , Transformação Celular Neoplásica , Primers do DNA/química , Primers do DNA/genética , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/fisiologia , Camundongos , Camundongos Knockout , Mutação/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , RNA Mensageiro/genética , Receptor Notch3 , Receptores Notch/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deleção de Sequência , Taxa de Sobrevida
14.
Blood ; 116(25): 5455-64, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-20852131

RESUMO

Point mutations that trigger ligand-independent proteolysis of the Notch1 ectodomain occur frequently in human T-cell acute lymphoblastic leukemia (T-ALL) but are rare in murine T-ALL, suggesting that other mechanisms account for Notch1 activation in murine tumors. Here we show that most murine T-ALLs harbor Notch1 deletions that fall into 2 types, both leading to ligand-independent Notch1 activation. Type 1 deletions remove exon 1 and the proximal promoter, appear to be RAG-mediated, and are associated with mRNA transcripts that initiate from 3' regions of Notch1. In line with the RAG dependency of these rearrangements, RAG2 binds to the 5' end of Notch1 in normal thymocytes near the deletion breakpoints. Type 2 deletions remove sequences between exon 1 and exons 26 to 28 of Notch1, appear to be RAG-independent, and are associated with transcripts in which exon 1 is spliced out of frame to 3' Notch1 exons. Translation of both types of transcripts initiates at a conserved methionine residue, M1727, which lies within the Notch1 transmembrane domain. Polypeptides initiating at M1727 insert into membranes and are subject to constitutive cleavage by γ-secretase. Thus, like human T-ALL, murine T-ALL is often associated with acquired mutations that cause ligand-independent Notch1 activation.


Assuntos
Proteínas de Homeodomínio/fisiologia , Iniciação Traducional da Cadeia Peptídica/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Regiões Promotoras Genéticas/genética , Receptor Notch1/genética , Ativação Transcricional/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Northern Blotting , Southern Blotting , Western Blotting , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Fator de Transcrição Ikaros/fisiologia , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Mutação/genética , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deleção de Sequência , Homologia de Sequência do Ácido Nucleico , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...