Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
2.
Nutrients ; 16(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38398877

RESUMO

Advanced glycation end products (AGEs) exert a key pathogenic role in the development of obesity and insulin resistance. Thanks to its abundance in bioactive compounds, the microalga Arthrospira platensis (spirulina, SP) is proposed as a nutritional supplement. Here, we investigated the potential anti-glycating properties of SP enriched with zinc (Zn-SP) and the following impact on diet-induced metabolic derangements. Thirty male C57Bl6 mice were fed a standard diet (SD) or a high-fat high-sugar diet (HFHS) for 12 weeks, and a subgroup of HFHS mice received 350 mg/kg Zn-SP three times a week. A HFHS diet induced obesity and glucose intolerance and increased plasma levels of pro-inflammatory cytokines and transaminases. Zn-SP administration restored glucose homeostasis and reduced hepatic dysfunction and systemic inflammation. In the liver of HFHS mice, a robust accumulation of AGEs was detected, paralleled by increased expression of the main AGE receptor (RAGE) and depletion of glyoxalase-1, whereas Zn-SP administration efficiently prevented these alterations reducing local pro-inflammatory responses. 16S rRNA gene profiling of feces and ileum content revealed altered bacterial community structure in HFHS mice compared to both SD and HFHS + Zn-SP groups. Overall, our study demonstrates relevant anti-glycation properties of Zn-SP which contribute to preventing AGE production and/or stimulate AGE detoxification, leading to the improvement of diet-related dysbiosis and metabolic derangements.


Assuntos
Spirulina , Masculino , Camundongos , Animais , Spirulina/química , Camundongos Obesos , Zinco , RNA Ribossômico 16S , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças
3.
J Adv Res ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38365172

RESUMO

INTRODUCTION: Obesity, one of the most frequent health problems in the adult population, is a condition characterized by excessive white adipose tissue accumulation and accompanied by the increased risk to develop other disorders such as type II diabetes, cardiovascular disorders, physical disability, frailty and sarcopenia. Total fat mass frequently increases during aging, often coexisting with sarcopenia, thus resulting in an emerging condition defined sarcopenic obesity (SO). Our previous data demonstrated the relevant role of the bromo and extra-terminal domain (BET) proteins inhibitor JQ1 in attenuating inflammation and fibrosis in sarcopenic mice. Moreover, we preliminarily observed that JQ1 administration markedly reduces white adipose tissue mass, suggesting a potential role of BET proteins on visceral fat deposition during aging. OBJECTIVES: Starting from those observations, the aim of this study was to investigate the ability of JQ1 to reduce adiposity in a chronic diet-induced obesity (DIO) mouse model mimicking the human metabolic syndrome. METHODS: Male C57BL/6J mice were divided in subgroups, either fed a standard diet or a high fat diet for 22 or 12 weeks, treated over the last 14 days with JQ1 or with vehicle. RESULTS: The results showed that JQ1 administration reduces fat mass, preserving skeletal muscle mass and function. A direct JQ1 lipolytic effect was demonstrated on mature adipocyte cultures. JQ1-mediated loss of adipose tissue mass was not associated with systemic inflammation or with lipid accumulation in muscle and liver. JQ1 administration did not impinge on skeletal muscle metabolism and oxidative capability, as shown by the lack of significant impact on mitochondrial mass and biogenesis. CONCLUSION: In conclusion, the current data highlight a potential benefit of JQ1 administration to counteract obesity, suggesting epigenetic modulation as a prospective target in the treatment of obesity and sarcopenic obesity, despite the underlying multiorgan molecular mechanism is still not completely elucidated.

4.
Mol Nutr Food Res ; 68(4): e2300476, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158337

RESUMO

SCOPE: Diets rich in fat and sugars evoke chronic low-grade inflammation, leading to metabolic derangements. This study investigates the impact of fructose and galactose, two commonly consumed simple sugars, on exacerbation of the harmful effects caused by high fat intake. Additionally, the potential efficacy of fructooligosaccharides (FOS), a fermentable dietary fiber, in counteracting these effects is examined. METHODS AND RESULTS: Male Sprague-Dawley rats (six/group) are fed 8 weeks as follows: control 5% fat diet (CNT), 20% fat diet (FAT), FAT+10% FOS diet (FAT+FOS), FAT+25% galactose diet (FAT+GAL), FAT+GAL+10% FOS diet (FAT+GAL+FOS), FAT+25% fructose diet (FAT+FRU), FAT+FRU+10% FOS diet (FAT+FRU+FOS). The dietary manipulations tested do not affect body weight gain, blood glucose, or markers of systemic inflammation whereas significant increases in plasma concentrations of triacylglycerols, cholesterol, aspartate aminotransferase, and alanine aminotrasferase are detected in both FAT+FRU and FAT+GAL compared to CNT. In the liver and skeletal muscle, both sugars induce significant accumulation of lipids and advanced glycation end-products (AGEs). FOS supplementation prevents these impairments. CONCLUSION: This study extends the understanding of the deleterious effects of a chronic intake of simple sugars and demonstrates the beneficial role of the prebiotic FOS in dampening the sugar-induced metabolic impairments by prevention of lipid and AGEs accumulation.


Assuntos
Frutose , Doenças Metabólicas , Oligossacarídeos , Ratos , Masculino , Animais , Frutose/efeitos adversos , Galactose , Ratos Sprague-Dawley , Ingestão de Alimentos , Inflamação/prevenção & controle , Dieta Hiperlipídica/efeitos adversos
5.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232456

RESUMO

KRIT1 loss-of-function mutations underlie the pathogenesis of Cerebral Cavernous Malformation (CCM), a major vascular disease affecting the central nervous system (CNS). However, KRIT1 is also expressed outside the CNS and modulates key regulators of metabolic and oxy-inflammatory pathways, including the master transcription factor FoxO1, suggesting a widespread functional significance. Herein, we show that the KRIT1/FoxO1 axis is implicated in liver metabolic functions and antioxidative/antiglycative defenses. Indeed, by performing comparative studies in KRIT1 heterozygous (KRIT1+/-) and wild-type mice, we found that KRIT1 haploinsufficiency resulted in FoxO1 expression/activity downregulation in the liver, and affected hepatic FoxO1-dependent signaling pathways, which are markers of major metabolic processes, including gluconeogenesis, glycolysis, mitochondrial respiration, and glycogen synthesis. Moreover, it caused sustained activation of the master antioxidant transcription factor Nrf2, hepatic accumulation of advanced glycation end-products (AGEs), and abnormal expression/activity of AGE receptors and detoxifying systems. Furthermore, it was associated with an impairment of food intake, systemic glucose disposal, and plasma levels of insulin. Specific molecular alterations detected in the liver of KRIT1+/- mice were also confirmed in KRIT1 knockout cells. Overall, our findings demonstrated, for the first time, that KRIT1 haploinsufficiency affects glucose homeostasis and liver metabolic and antioxidative/antiglycative functions, thus inspiring future basic and translational studies.


Assuntos
Insulinas , Fator 2 Relacionado a NF-E2 , Animais , Antioxidantes , Glucose , Glicogênio , Proteína KRIT1 , Fígado , Camundongos , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/genética
6.
Front Immunol ; 13: 992614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119089

RESUMO

Inducible T cell co-stimulator (ICOS), an immune checkpoint protein expressed on activated T cells and its unique ligand, ICOSL, which is expressed on antigen-presenting cells and non-hematopoietic cells, have been extensively investigated in the immune response. Recent findings showed that a soluble recombinant form of ICOS (ICOS-Fc) can act as an innovative immunomodulatory drug as both antagonist of ICOS and agonist of ICOSL, modulating cytokine release and cell migration to inflamed tissues. Although the ICOS-ICOSL pathway has been poorly investigated in the septic context, a few studies have reported that septic patients have reduced ICOS expression in whole blood and increased serum levels of osteopontin (OPN), that is another ligand of ICOSL. Thus, we investigated the pathological role of the ICOS-ICOSL axis in the context of sepsis and the potential protective effects of its immunomodulation by administering ICOS-Fc in a murine model of sepsis. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP) in five-month-old male wild-type (WT) C57BL/6, ICOS-/-, ICOSL-/- and OPN-/- mice. One hour after the surgical procedure, either CLP or Sham (control) mice were randomly assigned to receive once ICOS-Fc, F119SICOS-Fc, a mutated form uncapable to bind ICOSL, or vehicle intravenously. Organs and plasma were collected 24 h after surgery for analyses. When compared to Sham mice, WT mice that underwent CLP developed within 24 h a higher clinical severity score, a reduced body temperature, an increase in plasma cytokines (TNF-α, IL-1ß, IL-6, IFN-γ and IL-10), liver injury (AST and ALT) and kidney (creatinine and urea) dysfunction. Administration of ICOS-Fc to WT CLP mice reduced all of these abnormalities caused by sepsis. Similar beneficial effects were not seen in CLP-mice treated with F119SICOS-Fc. Treatment of CLP-mice with ICOS-Fc also attenuated the sepsis-induced local activation of FAK, P38 MAPK and NLRP3 inflammasome. ICOS-Fc seemed to act at both sides of the ICOS-ICOSL interaction, as the protective effect was lost in septic knockout mice for the ICOS or ICOSL genes, whereas it was maintained in OPN knockout mice. Collectively, our data show the beneficial effects of pharmacological modulation of the ICOS-ICOSL pathway in counteracting the sepsis-induced inflammation and organ dysfunction.


Assuntos
Osteopontina , Sepse , Animais , Masculino , Camundongos , Creatinina , Citocinas/metabolismo , Proteínas de Checkpoint Imunológico , Imunidade , Imunomodulação , Ligante Coestimulador de Linfócitos T Induzíveis/genética , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Inflamassomos , Inflamação , Interleucina-10 , Interleucina-6 , Ligantes , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Quinases p38 Ativadas por Mitógeno , Sepse/tratamento farmacológico , Fator de Necrose Tumoral alfa , Ureia
7.
Front Immunol ; 13: 837180, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35178052

RESUMO

Sepsis and septic shock are associated with high mortality and are considered one of the major public health concerns. The onset of sepsis is known as a hyper-inflammatory state that contributes to organ failure and mortality. Recent findings suggest a potential role of two non-receptor protein tyrosine kinases, namely Focal adhesion kinase (FAK) and Proline-rich tyrosine kinase 2 (Pyk2), in the inflammation associated with endometriosis, cancer, atherosclerosis and asthma. Here we investigate the role of FAK-Pyk2 in the pathogenesis of sepsis and the potential beneficial effects of the pharmacological modulation of this pathway by administering the potent reversible dual inhibitor of FAK and Pyk2, PF562271 (PF271) in a murine model of cecal ligation and puncture (CLP)-induced sepsis. Five-month-old male C57BL/6 mice underwent CLP or Sham surgery and one hour after the surgical procedure, mice were randomly assigned to receive PF271 (25 mg/kg, s.c.) or vehicle. Twenty-four hours after surgery, organs and plasma were collected for analyses. In another group of mice, survival rate was assessed every 12 h over the subsequent 5 days. Experimental sepsis led to a systemic cytokine storm resulting in the formation of excessive amounts of both pro-inflammatory cytokines (TNF-α, IL-1ß, IL-17 and IL-6) and the anti-inflammatory cytokine IL-10. The systemic inflammatory response was accompanied by high plasma levels of ALT, AST (liver injury), creatinine, (renal dysfunction) and lactate, as well as a high, clinical severity score. All parameters were attenuated following PF271 administration. Experimental sepsis induced an overactivation of FAK and Pyk2 in liver and kidney, which was associated to p38 MAPK activation, leading to increased expression/activation of several pro-inflammatory markers, including the NLRP3 inflammasome complex, the adhesion molecules ICAM-1, VCAM-1 and E-selectin and the enzyme NOS-2 and myeloperoxidase. Treatment with PF271 inhibited FAK-Pyk2 activation, thus blunting the inflammatory abnormalities orchestrated by sepsis. Finally, PF271 significantly prolonged the survival of mice subjected to CLP-sepsis. Taken together, our data show for the first time that the FAK-Pyk2 pathway contributes to sepsis-induced inflammation and organ injury/dysfunction and that the pharmacological modulation of this pathway may represents a new strategy for the treatment of sepsis.


Assuntos
Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 2 de Adesão Focal/antagonistas & inibidores , Inflamação/tratamento farmacológico , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/fisiopatologia , Ligadura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Insuficiência de Múltiplos Órgãos/fisiopatologia , Distribuição Aleatória , Sepse , Taxa de Sobrevida
8.
Sci Rep ; 11(1): 17373, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462492

RESUMO

Advanced glycation endproducts (AGEs) are involved in several diseases, including NAFLD and NASH. RAGE is the main receptor mediating the pro-inflammatory signalling induced by AGEs. Therefore, targeting of RAGE has been proposed for prevention of chronic inflammatory diseases. However, the role of RAGE in the development of NAFLD and NASH remains poorly understood. We thus aimed to analyse the effect of obesity on AGEs accumulation, AGE-receptors and AGE-detoxification, and whether the absence of RAGE might improve hepatosteatosis and inflammation, by comparing the liver of lean control, obese (LeptrDb-/-) and obese RAGE-deficient (RAGE-/- LeptrDb-/-) mice. Obesity induced AGEs accumulation and RAGE expression with hepatosteatosis and inflammation in LeptrDb-/-, compared to lean controls. Despite the genetic deletion of RAGE in the LeptrDb-/- mice, high levels of intrahepatic AGEs were maintained accompanied by decreased expression of the protective AGE-receptor-1, impaired AGE-detoxifying system glyoxalase-1, and increased expression of the alternative AGE-receptor galectin-3. We also found sustained hepatosteatosis and inflammation as determined by persistent activation of the lipogenic SREBP1c and proinflammatory NLRP3 signalling pathways. Thus, RAGE targeting is not effective in the prevention of NAFLD in conditions of obesity, likely due to the direct liver specific crosstalk of RAGE with other AGE-receptors and AGE-detoxifying systems.


Assuntos
Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/fisiologia , Tecido Adiposo/metabolismo , Animais , Feminino , Deleção de Genes , Inflamassomos , Inflamação/metabolismo , Lipídeos/química , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Receptores Imunológicos/metabolismo , Transdução de Sinais
9.
Free Radic Biol Med ; 169: 425-435, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33905864

RESUMO

High plasma levels of the sphingolipid intermediates ceramide (Cer) and sphingosine-1-phosphate (S1P) are suggested to be involved in the development of insulin resistance (IR). Recent evidence indicates that advanced glycation endproducts (AGEs) can alter the sphingolipids metabolism equilibrium. Since enzymes responsible for sphingolipid rheostat maintenance are highly expressed in liver, we thus investigated whether AGEs accumulation can affect hepatic sphingolipids metabolism in insulin resistant mice. Two different models of IR were examined: genetically diabetic LeptrDb-/- (DbDb) and diet-induced insulin resistant C57Bl/6J mice fed a 60% trans-fat diet (HFD). In addition, a group of HFD mice was supplemented with the anti-AGEs compound pyridoxamine. AGEs were evaluated in the liver by western blotting. Cer and S1P were measured by UHPLC-MS/MS. The expression of RAGE and of enzymes involved in sphingolipid metabolism were assessed by RT-PCR and western blotting. HepG2 cells were used to study the effect of the major AGE Nε-(carboxymethyl)lysine (CML)-albumin on sphingolipid metabolism and the role of the receptor of AGEs (RAGE). High levels of AGEs and RAGE were detected in the liver of both DbDb and HFD mice in comparison to controls. The expression of enzymes of sphingolipid metabolism was altered in both models, accompanied by increased levels of Cer and S1P. Specifically, ceramide synthase 5 and sphingosine kinase 1 were increased, while neutral ceramidase was reduced. Pyridoxamine supplementation to HFD mice diminished hepatic AGEs and prevented alterations of sphingolipid metabolism and the development of IR. CML administration to HepG2 cells evoked alterations similar to those observed in vivo, that were in part mediated by the binding to RAGE. The present study shows a direct involvement of AGEs in alterations of sphingolipid metabolism associated to the development of IR. The modulation of sphingolipids metabolism through the prevention of AGEs accumulation by pyridoxamine may reduce the development of IR.


Assuntos
Insulina , Esfingolipídeos , Animais , Produtos Finais de Glicação Avançada , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Receptor para Produtos Finais de Glicação Avançada/genética , Espectrometria de Massas em Tandem
10.
Nutrients ; 12(9)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824970

RESUMO

Heat-processed diets contain high amounts of advanced glycation end products (AGEs). Here we explore the impact of an AGE-enriched diet on markers of metabolic and inflammatory disorders as well as on gut microbiota composition and plasma proteins glycosylation pattern. C57BL/6 mice were allocated into control diet (CD, n = 15) and AGE-enriched diet (AGE-D, n = 15) for 22 weeks. AGE-D was prepared replacing casein by methylglyoxal hydroimidazolone-modified casein. AGE-D evoked increased insulin and a significant reduction of GIP/GLP-1 incretins and ghrelin plasma levels, altered glucose tolerance, and impaired insulin signaling transduction in the skeletal muscle. Moreover, AGE-D modified the systemic glycosylation profile, as analyzed by lectin microarray, and increased Nε-carboxymethyllysine immunoreactivity and AGEs receptor levels in ileum and submandibular glands. These effects were associated to increased systemic levels of cytokines and impaired gut microbial composition and homeostasis. Significant correlations were recorded between changes in bacterial population and in incretins and inflammatory markers levels. Overall, our data indicates that chronic exposure to dietary AGEs lead to a significant unbalance in incretins axis, markers of metabolic inflammation, and a reshape of both the intestinal microbiota and plasma protein glycosylation profile, suggesting intriguing pathological mechanisms underlying AGEs-induced metabolic derangements.


Assuntos
Dieta , Microbioma Gastrointestinal , Produtos Finais de Glicação Avançada/efeitos adversos , Produtos Finais de Glicação Avançada/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Animais , Citocinas/metabolismo , Grelina/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Glicosilação , Mediadores da Inflamação/metabolismo , Insulina/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Transdução de Sinais
11.
Mol Metab ; 39: 101009, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32413585

RESUMO

OBJECTIVE: Recent evidence suggests the substantial pathogenic role of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway in the development of low-grade chronic inflammatory response, known as "metaflammation," which contributes to obesity and type 2 diabetes. In this study, we investigated the effects of the JAK1/2 inhibitor baricitinib, recently approved for the treatment of rheumatoid arthritis, in a murine high-fat-high sugar diet model. METHODS: Male C57BL/6 mice were fed with a control normal diet (ND) or a high-fat-high sugar diet (HD) for 22 weeks. A sub-group of HD fed mice was treated with baricitinib (10 mg/kg die, p.o.) for the last 16 weeks (HD + Bar). RESULTS: HD feeding resulted in obesity, insulin-resistance, hypercholesterolemia and alterations in gut microbial composition. The metabolic abnormalities were dramatically reduced by chronic baricitinib administration. Treatment of HD mice with baricitinib did not change the diet-induced alterations in the gut, but restored insulin signaling in the liver and skeletal muscle, resulting in improvements of diet-induced myosteatosis, mesangial expansion and associated proteinuria. The skeletal muscle and renal protection were due to inhibition of the local JAK2-STAT2 pathway by baricitinib. We also demonstrated that restored tissue levels of JAK2-STAT2 activity were associated with a significant reduction in cytokine levels in the blood. CONCLUSIONS: In summary, our data suggest that the JAK2-STAT2 pathway may represent a novel candidate for the treatment of diet-related metabolic derangements, with the potential for EMA- and FDA-approved JAK inhibitors to be repurposed for the treatment of type 2 diabetes and/or its complications.


Assuntos
Azetidinas/farmacologia , Dieta Hiperlipídica/efeitos adversos , Inibidores de Janus Quinases/farmacologia , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Purinas/farmacologia , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Biomarcadores , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Glucose/metabolismo , Imuno-Histoquímica , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/metabolismo , Insulina/metabolismo , Janus Quinase 2/metabolismo , Masculino , Doenças Metabólicas/diagnóstico , Doenças Metabólicas/tratamento farmacológico , Camundongos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Pediatr Blood Cancer ; 67(3): e28106, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31820553

RESUMO

BACKGROUND: Among survivors of pediatric acute lymphoblastic leukemia (ALL), those who received hematopoietic stem cell transplantation (HSCT) conditioned with total-body irradiation (TBI) show the highest risk of late complications, including cardiovascular (CV) disease. Advanced glycation end products (AGEs) have been associated with CV disease in diabetes mellitus and other clinical conditions. This study explores AGEs plasma levels, inflammatory status, and lipid profile in survivors of pediatric ALL who received HSCT conditioned with TBI. PROCEDURE: Inclusion criteria were (a) previous diagnosis of ALL at age < 18 years, treated with HSCT conditioned with TBI; (b) age > 18 at the time of the study enrollment; (c) off-therapy for at least five years. Radiotherapy other than TBI, preexisting heart disease, glucose metabolism impairment, body mass index > 25, active graft versus host disease (GvHD), smoking, or treatment with cholesterol lowering medications were exclusion criteria. Eighteen survivors and 30 age-matched healthy controls were enrolled. RESULTS: AGEs plasma levels were markedly higher in ALL survivors than in healthy subjects (2.15 ± 2.21 vs 0.29 ± 0.15 pg/mL, P < 0.01). Survivors also showed higher levels of high-sensitivity C-reactive protein (2.32 ± 1.70 vs 0.88 ± 1.09 mg/dL, P < 0.05), IL-1ß (7.04 ± 1.52 vs 4.64 ± 2.02 pg/mL, P < 0.001), IL17 (37.44 ± 3.51 vs 25.19 ± 6.34 pg/mL, P < 0.001), an increased glutathione/reduced glutathione ratio (0.085 ± 0.07 vs 0.041 ± 0.036, P < 0.05) and slight alterations in their lipid profile. CONCLUSIONS: Our data show AGEs accumulation and chronic inflammation in ALL survivors who received HSCT conditioned with TBI. These alterations may contribute to the increased risk of CV disease reported in these subjects.


Assuntos
Biomarcadores/sangue , Sobreviventes de Câncer/estatística & dados numéricos , Produtos Finais de Glicação Avançada/sangue , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Inflamação/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Irradiação Corporal Total/efeitos adversos , Adulto , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/etiologia , Estudos de Casos e Controles , Criança , Doença Crônica , Feminino , Seguimentos , Humanos , Inflamação/sangue , Inflamação/etiologia , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Prognóstico , Adulto Jovem
13.
Int J Mol Sci ; 20(19)2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31590384

RESUMO

Loss-of-function mutations of the gene encoding Krev interaction trapped protein 1 (KRIT1) are associated with the pathogenesis of Cerebral Cavernous Malformation (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries and affecting 0.5% of the human population. However, growing evidence demonstrates that KRIT1 is implicated in the modulation of major redox-sensitive signaling pathways and mechanisms involved in adaptive responses to oxidative stress and inflammation, suggesting that its loss-of-function mutations may have pathological effects not limited to CCM disease. The aim of this study was to address whether KRIT1 loss-of-function predisposes to the development of pathological conditions associated with enhanced endothelial cell susceptibility to oxidative stress and inflammation, such as arterial endothelial dysfunction (ED) and atherosclerosis. Silencing of KRIT1 in human aortic endothelial cells (HAECs), coronary artery endothelial cells (HCAECs), and umbilical vein endothelial cells (HUVECs) resulted in increased expression of endothelial proinflammatory adhesion molecules vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) and in enhanced susceptibility to tumor necrosis factor alpha (TNF-α)-induced apoptosis. These effects were associated with a downregulation of Notch1 activation that could be rescued by antioxidant treatment, suggesting that they are consequent to altered intracellular redox homeostasis induced by KRIT1 loss-of-function. Furthermore, analysis of the aorta of heterozygous KRIT1+/- mice fed a high-fructose diet to induce systemic oxidative stress and inflammation demonstrated a 1.6-fold increased expression of VCAM-1 and an approximately 2-fold enhanced fat accumulation (7.5% vs 3.6%) in atherosclerosis-prone regions, including the aortic arch and aortic root, as compared to corresponding wild-type littermates. In conclusion, we found that KRIT1 deficiency promotes ED, suggesting that, besides CCM, KRIT1 may be implicated in genetic susceptibility to the development of atherosclerotic lesions.


Assuntos
Aorta/metabolismo , Aterosclerose/genética , Endotélio Vascular/metabolismo , Proteína KRIT1/genética , Mutação com Perda de Função , Animais , Aorta/patologia , Apoptose , Aterosclerose/metabolismo , Endotélio Vascular/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Proteína KRIT1/deficiência , Proteína KRIT1/metabolismo , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Receptor Notch1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
14.
Front Immunol ; 10: 571, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30972066

RESUMO

Annexin A1 (ANXA1) is an endogenously produced anti-inflammatory protein, which plays an important role in the pathophysiology of diseases associated with chronic inflammation. We demonstrate that patients with type-2 diabetes have increased plasma levels of ANXA1 when compared to normoglycemic subjects. Plasma ANXA1 positively correlated with fatty liver index and elevated plasma cholesterol in patients with type-2 diabetes, suggesting a link between aberrant lipid handling, and ANXA1. Using a murine model of high fat diet (HFD)-induced insulin resistance, we then investigated (a) the role of endogenous ANXA1 in the pathophysiology of HFD-induced insulin resistance using ANXA1-/- mice, and (b) the potential use of hrANXA1 as a new therapeutic approach for experimental diabetes and its microvascular complications. We demonstrate that: (1) ANXA1-/- mice fed a HFD have a more severe diabetic phenotype (e.g., more severe dyslipidemia, insulin resistance, hepatosteatosis, and proteinuria) compared to WT mice fed a HFD; (2) treatment of WT-mice fed a HFD with hrANXA1 attenuated the development of insulin resistance, hepatosteatosis and proteinuria. We demonstrate here for the first time that ANXA1-/- mice have constitutively activated RhoA. Interestingly, diabetic mice, which have reduced tissue expression of ANXA1, also have activated RhoA. Treatment of HFD-mice with hrANXA1 restored tissue levels of ANXA1 and inhibited RhoA activity, which, in turn, resulted in restoration of the activities of Akt, GSK-3ß and endothelial nitric oxide synthase (eNOS) secondary to re-sensitization of IRS-1 signaling. We further demonstrate in human hepatocytes that ANXA1 protects against excessive mitochondrial proton leak by activating FPR2 under hyperglycaemic conditions. In summary, our data suggest that (a) ANXA1 is a key regulator of RhoA activity, which restores IRS-1 signal transduction and (b) recombinant human ANXA1 may represent a novel candidate for the treatment of T2D and/or its complications.


Assuntos
Anexina A1/genética , Anexina A1/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Anexina A1/sangue , Colesterol/sangue , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Dieta Hiperlipídica/efeitos adversos , Dislipidemias/fisiopatologia , Fígado Gorduroso/sangue , Fígado Gorduroso/patologia , Humanos , Hiperglicemia/fisiopatologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/fisiopatologia , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo
15.
Oxid Med Cell Longev ; 2018: 5042428, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30327714

RESUMO

BACKGROUND: D-tagatose is an isomer of fructose and is ~90% as sweet as sucrose with less caloric value. Nowadays, D-tagatose is used as a nutritive or low-calorie sweetener. Despite clinical findings suggesting that D-tagatose could be beneficial in subjects with type 2 diabetes, there are no experimental data comparing D-tagatose with fructose, in terms of metabolic derangements and related molecular mechanisms evoked by chronic exposure to these two monosaccharides. MATERIALS AND METHODS: C57Bl/6j mice were fed with a control diet plus water (CD), a control diet plus 30% fructose syrup (L-Fr), a 30% fructose solid diet plus water (S-Fr), a control diet plus 30% D-tagatose syrup (L-Tg), or a 30% D-tagatose solid diet plus water (S-Tg), during 24 weeks. RESULTS: Both solid and liquid fructose feeding led to increased body weight, abnormal systemic glucose homeostasis, and an altered lipid profile. These effects were associated with vigorous increase in oxidative markers. None of these metabolic abnormalities were detected when mice were fed with both the solid and liquid D-tagatose diets, either at the systemic or at the local level. Interestingly, both fructose formulations led to significant Advanced Glycation End Products (AGEs) accumulation in mouse hearts, as well as a robust increase in both myocardial AGE receptor (RAGE) expression and NF-κB activation. In contrast, no toxicological effects were shown in hearts of mice chronically exposed to liquid or solid D-tagatose. CONCLUSION: Our results clearly suggest that chronic overconsumption of D-tagatose in both formulations, liquid or solid, does not exert the same deleterious metabolic derangements evoked by fructose administration, due to differences in carbohydrate interference with selective proinflammatory and oxidative stress cascades.


Assuntos
Frutose/farmacologia , Hexoses/farmacologia , Miocárdio/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Coração/efeitos dos fármacos , Masculino , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Edulcorantes/farmacologia
16.
Kidney Int ; 94(2): 252-258, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29706358

RESUMO

The endogenous cannabinoids anandamide and 2-arachidonoylglycerol bind to the cannabinoid receptors of type 1 and 2. These receptors are also the binding sites for exogenous, both natural and synthetic, cannabinoids that are used for recreation purposes. Until recently, cannabinoids and cannabinoid receptors have attracted little interest among nephrologists; however, a full endocannabinoid system (ECS) is present in the kidney and it has recently emerged as an important player in the pathogenesis of diabetic nephropathy, drug nephrotoxicity, and progressive chronic kidney disease. This newly established role of the ECS in the kidney might have therapeutic relevance, as pharmacological modulation of the ECS has renoprotective effects in experimental animals, raising hope for future potential applications in humans. In addition, over the last years, there has been a number of reported cases of acute kidney injury (AKI) associated with the use of synthetic cannabinoids that appear to have higher potency and rate of toxicity than natural Cannabis. This poorly recognized cause of renal injury should be considered in the differential diagnosis of AKI, particularly in young people. In this review we provide an overview of preclinical evidence indicating a role of the ECS in renal disease and discuss potential future therapeutic applications. Moreover, we give a critical update of synthetic cannabinoid-induced AKI.


Assuntos
Injúria Renal Aguda/etiologia , Endocanabinoides/metabolismo , Rim/patologia , Receptores de Canabinoides/metabolismo , Insuficiência Renal Crônica/etiologia , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/patologia , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/uso terapêutico , Antagonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/uso terapêutico , Modelos Animais de Doenças , Humanos , Receptores de Canabinoides/uso terapêutico , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/patologia , Transdução de Sinais/efeitos dos fármacos
17.
J Nutr Biochem ; 55: 185-199, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29539590

RESUMO

Despite clinical findings suggesting that the form (liquid versus solid) of the sugars may significantly affect the development of metabolic diseases, no experimental data are available on the impact of their formulations on gut microbiota, integrity and hepatic outcomes. In the present sudy, C57Bl/6j mice were fed a standard diet plus water (SD), a standard diet plus 60% fructose syrup (L-Fr) or a 60% fructose solid diet plus water (S-Fr) for 12 weeks. Gut microbiota was characterized through 16S rRNA phylogenetic profiling and shotgun sequencing of microbial genes in ileum content and related volatilome profiling. Fructose feeding led to alterations of the gut microbiota depending on the fructose formulation, with increased colonization by Clostridium, Oscillospira and Clostridiales phyla in the S-Fr group and Bacteroides, Lactobacillus, Lachnospiraceae and Dorea in the L-Fr. S-Fr evoked the highest accumulation of advanced glycation end products and barrier injury in the ileum intestinal mucosa. These effects were associated to a stronger activation of the lipopolysaccharide-dependent proinflammatory TLR4/NLRP3 inflammasome pathway in the liver of S-Fr mice than of L-Fr mice. In contrast, L-Fr intake induced higher levels of hepatosteatosis and markers of fibrosis than S-Fr. Fructose-induced ex novo lipogenesis with production of SCFA and MCFA was confirmed by metagenomic analysis. These results suggest that consumption of fructose under different forms, liquid or solid, may differently affect gut microbiota, thus leading to impairment in intestinal mucosa integrity and liver homeostasis.


Assuntos
Frutose/química , Frutose/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Cirrose Hepática/induzido quimicamente , Animais , Fezes/química , Frutose/urina , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Transportador de Glucose Tipo 2/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Inflamassomos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Cirrose Hepática/metabolismo , Masculino , Metagenoma/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
18.
Anal Bioanal Chem ; 410(11): 2723-2737, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29516133

RESUMO

This study exploits the information potential of comprehensive two-dimensional gas chromatography configured with a parallel dual secondary column-dual detection by mass spectrometry and flame ionization (GC×2GC-MS/FID) to study changes in urinary metabolic signatures of mice subjected to high-fructose diets. Samples are taken from mice fed with normal or fructose-enriched diets provided either in aqueous solution or in solid form and analyzed at three stages of the dietary intervention (1, 6, and 12 weeks). Automated Untargeted and Targeted fingerprinting for 2D data elaboration is adopted for the most inclusive data mining of GC×GC patterns. The UT fingerprinting strategy performs a fully automated peak-region features fingerprinting and combines results from pre-targeted compounds and unknowns across the sample-set. The most informative metabolites, with statistically relevant differences between sample groups, are obtained by unsupervised multivariate analysis (MVA) and cross-validated by multi-factor analysis (MFA) with external standard quantitation by GC-MS. Results indicate coherent clustering of mice urine signatures according to dietary manipulation. Notably, the metabolite fingerprints of mice fed with liquid fructose exhibited greater derangement in fructose, glucose, citric, pyruvic, malic, malonic, gluconic, cis-aconitic, succinic and 2-keto glutaric acids, glycine acyl derivatives (N-carboxy glycine, N-butyrylglycine, N-isovaleroylglycine, N-phenylacetylglycine), and hippuric acid. Untargeted fingerprinting indicates some analytes which were not a priori pre-targeted which provide additional insights: N-acetyl glucosamine, N-acetyl glutamine, malonyl glycine, methyl malonyl glycine, and glutaric acid. Visual features fingerprinting is used to track individual variations during experiments, thereby extending the panorama of possible data elaboration tools. Graphical abstract ᅟ.


Assuntos
Açúcares da Dieta/metabolismo , Frutose/metabolismo , Metaboloma , Metabolômica/métodos , Urina/química , Animais , Açúcares da Dieta/urina , Frutose/urina , Cromatografia Gasosa-Espectrometria de Massas/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
PLoS One ; 13(1): e0189707, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29342166

RESUMO

Epidemiological studies pointed out to a strong association between vitamin D deficiency and type 2 diabetes prevalence. However, the role of vitamin D supplementation in the skeletal muscle, a tissue that play a crucial role in the maintenance of glucose homeostasis, has been scarcely investigated so far. On this basis, this study aimed to evaluate the effect of vitamin D supplementation in a murine model of diet-induced insulin resistance with particular attention to the effects evoked on the skeletal muscle. Male C57BL/6J mice (n = 40) were fed with a control or a High Fat-High Sugar (HFHS) diet for 4 months. Subsets of animals were treated for 2 months with vitamin D (7 µg·kg-1, i.p. three times/week). HFHS diet induced body weight increase, hyperglycemia and impaired glucose tolerance. HFHS animals showed an impaired insulin signaling and a marked fat accumulation in the skeletal muscle. Vitamin D reduced body weight and improved systemic glucose tolerance. In addition, vitamin D restored the impaired muscle insulin signaling and reverted myosteatosis evoked by the diet. These effects were associated to decreased activation of NF-κB and lower levels of TNF-alpha. Consistently, a significantly decreased activation of the SCAP/SREBP lipogenic pathway and lower levels of CML protein adducts and RAGE expression were observed in skeletal muscle of animals treated with vitamin D. Collectively, these data indicate that vitamin D-induced selective inhibition of signaling pathways (including NF-κB, SCAP/SREBP and CML/RAGE cascades) within the skeletal muscle significantly contributed to the beneficial effects of vitamin D supplementation against diet-induced metabolic derangements.


Assuntos
Resistência à Insulina , Doenças Musculares/prevenção & controle , Vitamina D/farmacologia , Animais , Dieta Hiperlipídica , Carboidratos da Dieta/administração & dosagem , Teste de Tolerância a Glucose , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Transdução de Sinais , Vitamina D/sangue
20.
Circ Res ; 122(1): 31-46, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29158345

RESUMO

RATIONALE: Human cardiac mesenchymal cells (CMSCs) are a therapeutically relevant primary cell population. Diabetes mellitus compromises CMSC function as consequence of metabolic alterations and incorporation of stable epigenetic changes. OBJECTIVE: To investigate the role of α-ketoglutarate (αKG) in the epimetabolic control of DNA demethylation in CMSCs. METHODS AND RESULTS: Quantitative global analysis, methylated and hydroxymethylated DNA sequencing, and gene-specific GC methylation detection revealed an accumulation of 5-methylcytosine, 5-hydroxymethylcytosine, and 5-formylcytosine in the genomic DNA of human CMSCs isolated from diabetic donors. Whole heart genomic DNA analysis revealed iterative oxidative cytosine modification accumulation in mice exposed to high-fat diet (HFD), injected with streptozotocin, or both in combination (streptozotocin/HFD). In this context, untargeted and targeted metabolomics indicated an intracellular reduction of αKG synthesis in diabetic CMSCs and in the whole heart of HFD mice. This observation was paralleled by a compromised TDG (thymine DNA glycosylase) and TET1 (ten-eleven translocation protein 1) association and function with TET1 relocating out of the nucleus. Molecular dynamics and mutational analyses showed that αKG binds TDG on Arg275 providing an enzymatic allosteric activation. As a consequence, the enzyme significantly increased its capacity to remove G/T nucleotide mismatches or 5-formylcytosine. Accordingly, an exogenous source of αKG restored the DNA demethylation cycle by promoting TDG function, TET1 nuclear localization, and TET/TDG association. TDG inactivation by CRISPR/Cas9 knockout or TET/TDG siRNA knockdown induced 5-formylcytosine accumulation, thus partially mimicking the diabetic epigenetic landscape in cells of nondiabetic origin. The novel compound (S)-2-[(2,6-dichlorobenzoyl)amino]succinic acid (AA6), identified as an inhibitor of αKG dehydrogenase, increased the αKG level in diabetic CMSCs and in the heart of HFD and streptozotocin mice eliciting, in HFD, DNA demethylation, glucose uptake, and insulin response. CONCLUSIONS: Restoring the epimetabolic control of DNA demethylation cycle promises beneficial effects on cells compromised by environmental metabolic changes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Ácidos Cetoglutáricos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Oxigenases de Função Mista/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Timina DNA Glicosilase/metabolismo , Animais , Células Cultivadas , Citosina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Inibidores Enzimáticos/farmacologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácidos Cetoglutáricos/antagonistas & inibidores , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...