Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Brain Pathol ; : e13283, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946128

RESUMO

The prognosis for many pediatric brain tumors, including cerebellar medulloblastoma (MB), remains dismal but there is promise in new therapies. We have previously generated a mouse model developing spontaneous MB at high frequency, Ptch1+/-/Tis21-/-. In this model, reproducing human tumorigenesis, we identified the decline of the Cxcl3 chemokine in cerebellar granule cell precursors (GCPs) as responsible for a migration defect, which causes GCPs to stay longer in the proliferative area rather than differentiate and migrate internally, making them targets of transforming insults. We demonstrated that 4-week Cxcl3 infusion in cerebella of 1-month-old mice, at the initial stage of MB formation, forces preneoplastic GCPs (pGCPs) to leave lesions and differentiate, with a complete suppression of MB development. In this study, we sought to verify the effect of 4-week Cxcl3 treatment in 3-month-old Ptch1+/-/Tis21-/- mice, when MB lesions are at an advanced, irreversible stage. We found that Cxcl3 treatment reduces tumor volumes by sevenfold and stimulates the migration and differentiation of pGCPs from the lesion to the internal cerebellar layers. We also tested whether the pro-migratory action of Cxcl3 favors metastases formation, by xenografting DAOY human MB cells in the cerebellum of immunosuppressed mice. We showed that DAOY cells express the Cxcl3 receptor, Cxcr2, and that Cxcl3 triggers their migration. However, Cxcl3 did not significantly affect the frequency of metastases or the growth of DAOY-generated MBs. Finally, we mapped the expression of the Cxcr2 receptor in human MBs, by evaluating a well-characterized series of 52 human MBs belonging to different MB molecular subgroups. We found that Cxcr2 was variably expressed in all MB subgroups, suggesting that Cxcl3 could be used for therapy of different MBs.

2.
Curr Opin Oncol ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38989708

RESUMO

PURPOSE OF REVIEW: Central nervous system (CNS) tumors represent a significant unmet medical need due to their enduring burden of high mortality and morbidity. Chimeric antigen receptor (CAR) T-cell therapy emerges as a groundbreaking approach, offering hope for improved treatment outcomes. However, despite its successes in hematological malignancies, its efficacy in solid tumors, including CNS tumors, remains limited. Challenges such as the intricate tumor microenvironment (TME), antigenic heterogeneity, and CAR T-cell exhaustion hinder its effectiveness. This review aims to explore the current landscape of CAR T-cell therapy for CNS tumors, highlighting recent advancements and addressing challenges in achieving therapeutic efficacy. RECENT FINDINGS: Innovative strategies aim to overcome the barriers posed by the TME and antigen diversity, prevent CAR T-cell exhaustion through engineering approaches and combination therapies with immune checkpoint inhibitors to improving treatment outcomes. SUMMARY: Researchers have been actively working to address these challenges. Moreover, addressing the unique challenges associated with neurotoxicity in CNS tumors requires specialized management strategies. These may include the development of grading systems, monitoring devices, alternative cell platforms and incorporation of suicide genes. Continued research efforts and clinical advancements are paramount to overcoming the existing challenges and realizing the full potential of CAR T-cell therapy in treating CNS tumors.

3.
Neuro Oncol ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717379

RESUMO

BACKGROUND: The term Gliomatosis cerebri (GC), a radiology-defined highly infiltrating diffuse glioma, has been abandoned since molecular GC-associated features have not been established yet. METHODS: We conducted a multinational retrospective study of 104 children and adolescents with GC providing comprehensive clinical and (epi-)genetic characterization. RESULTS: Median overall survival (OS) was 15.5 months (interquartile range, 10.9-27.7) with a 2-years survival rate of 28%. Histopathological grading correlated significantly with median OS: CNS WHO grade II: 47.8 months (25.2-55.7); grade III: 15.9 months (11.4-26.3); grade IV: 10.4 months (8.8-14.4). By DNA methylation profiling (n=49), most tumors were classified as pediatric-type diffuse high-grade glioma (pedHGG), H3-/IDH-wildtype (n=31/49, 63.3%) with enriched subclasses pedHGG_RTK2 (n=19), pedHGG_A/B (n=6), and pedHGG_MYCN (n=5), but only one pedHGG_RTK1 case. Within the pedHGG, H3-/IDH-wildtype subgroup, recurrent alterations in EGFR (n=10) and BCOR (n=9) were identified. Additionally, we observed structural aberrations in chromosome 6 in 16/49 tumors (32.7%) across tumor types. In the pedHGG, H3-/IDH-wildtype subgroup TP53 alterations had a significant negative effect on OS. CONCLUSION: Contrary to previous studies, our representative pediatric GC study provides evidence that GC has a strong predilection to arise on the background of specific molecular features (especially pedHGG_RTK2, pedHGG_A/B, EGFR and BCOR mutations, chromosome 6 rearrangements).

6.
NPJ Precis Oncol ; 8(1): 92, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637626

RESUMO

In vitro models of pediatric brain tumors (pBT) are instrumental for better understanding the mechanisms contributing to oncogenesis and testing new therapies; thus, ideally, they should recapitulate the original tumor. We applied DNA methylation (DNAm) and copy number variation (CNV) profiling to characterize 241 pBT samples, including 155 tumors and 86 pBT-derived cell cultures, considering serum vs serum-free conditions, late vs early passages, and dimensionality (2D vs 3D cultures). We performed a t-SNE classification and identified differentially methylated regions in tumors compared to cell models. Early cell cultures recapitulate the original tumor, but serum media and 2D culturing were demonstrated to significantly contribute to the divergence of DNAm profiles from the parental ones. All divergent cells clustered together acquiring a common deregulated epigenetic signature suggesting a shared selective pressure. We identified a set of hypomethylated genes shared among unfaithful cells converging on response to growth factors and migration pathways, such as signaling cascade activation, tissue organization, and cellular migration. In conclusion, DNAm and CNV are informative tools that should be used to assess the recapitulation of pBT-cells from parental tumors.

7.
Front Mol Neurosci ; 17: 1268038, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544524

RESUMO

The fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS), published in 2021, established new approaches to both CNS tumor nomenclature and grading, emphasizing the importance of integrated diagnoses and layered reports. This edition increased the role of molecular diagnostics in CNS tumor classification while still relying on other established approaches such as histology and immunohistochemistry. Moreover, it introduced new tumor types and subtypes based on novel diagnostic technologies such as DNA methylome profiling. Over the past decade, molecular techniques identified numerous key genetic alterations in CSN tumors, with important implications regarding the understanding of pathogenesis but also for prognosis and the development and application of effective molecularly targeted therapies. This review summarizes the major changes in the 2021 fifth edition classification of pediatric CNS tumors, highlighting for each entity the molecular alterations and other information that are relevant for diagnostic, prognostic, or therapeutic purposes and that patients' and oncologists' need from a pathology report.

8.
Clin Cancer Res ; 30(11): 2545-2557, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38551501

RESUMO

PURPOSE: Medulloblastoma (MB), the most common childhood malignant brain tumor, has a poor prognosis in about 30% of patients. The current standard of care, which includes surgery, radiation, and chemotherapy, is often responsible for cognitive, neurologic, and endocrine side effects. We investigated whether chimeric antigen receptor (CAR) T cells directed toward the disialoganglioside GD2 can represent a potentially more effective treatment with reduced long-term side effects. EXPERIMENTAL DESIGN: GD2 expression was evaluated on primary tumor biopsies of MB children by flow cytometry. GD2 expression in MB cells was also evaluated in response to an EZH2 inhibitor (tazemetostat). In in vitro and in vivo models, GD2+ MB cells were targeted by a CAR-GD2.CD28.4-1BBζ (CAR.GD2)-T construct, including the suicide gene inducible caspase-9. RESULTS: GD2 was expressed in 82.68% of MB tumors. The SHH and G3-G4 subtypes expressed the highest levels of GD2, whereas the WNT subtype expressed the lowest. In in vitro coculture assays, CAR.GD2 T cells were able to kill GD2+ MB cells. Pretreatment with tazemetostat upregulated GD2 expression, sensitizing GD2dimMB cells to CAR.GD2 T cells cytotoxic activity. In orthotopic mouse models of MB, intravenously injected CAR.GD2 T cells significantly controlled tumor growth, prolonging the overall survival of treated mice. Moreover, the dimerizing drug AP1903 was able to cross the murine blood-brain barrier and to eliminate both blood-circulating and tumor-infiltrating CAR.GD2 T cells. CONCLUSIONS: Our experimental data indicate the potential efficacy of CAR.GD2 T-cell therapy. A phase I/II clinical trial is ongoing in our center (NCT05298995) to evaluate the safety and therapeutic efficacy of CAR.GD2 therapy in high-risk MB patients.


Assuntos
Gangliosídeos , Imunoterapia Adotiva , Meduloblastoma , Receptores de Antígenos Quiméricos , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Meduloblastoma/terapia , Meduloblastoma/imunologia , Meduloblastoma/patologia , Meduloblastoma/genética , Meduloblastoma/metabolismo , Animais , Camundongos , Gangliosídeos/metabolismo , Gangliosídeos/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Linhagem Celular Tumoral , Criança , Feminino , Linfócitos T/imunologia , Linfócitos T/metabolismo , Neoplasias Cerebelares/terapia , Neoplasias Cerebelares/imunologia , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/metabolismo , Morfolinas/farmacologia , Masculino , Pré-Escolar , Benzamidas , Compostos de Bifenilo , Piridonas
10.
J Neurooncol ; 167(1): 145-154, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457090

RESUMO

PURPOSE: Adult Diffuse midline glioma (DMG) is a very rare disease. DMGs are currently treated with radiotherapy and chemotherapy even if only a few retrospective studies assessed the impact on overall survival (OS) of these approaches. METHODS: We carried out an Italian multicentric retrospective study of adult patients with H3K27-altered DMG to assess the effective role of systemic therapy in the treatment landscape of this rare tumor type. RESULTS: We evaluated 49 patients from 6 Institutions. The median age was 37.3 years (range 20.1-68.3). Most patients received biopsy as primary approach (n = 30, 61.2%) and radiation therapy after surgery (n = 39, 79.6%). 25 (51.0%) of patients received concurrent chemotherapy and 26 (53.1%) patients received adjuvant temozolomide. In univariate analysis, concurrent chemotherapy did not result in OS improvement while adjuvant temozolomide was associated with longer OS (21.2 vs. 9.0 months, HR 0.14, 0.05-0.41, p < 0.001). Multivariate analysis confirmed the role of adjuvant chemotherapy (HR 0.1, 95%CI: 0.03-0.34, p = 0.003). In patients who progressed after radiation and/or chemotherapy the administration of a second-line systemic treatment had a significantly favorable impact on survival (8.0 vs. 3.2 months, HR 0.2, 95%CI 0.1-0.65, p = 0.004). CONCLUSION: In our series, adjuvant treatment after radiotherapy can be useful in improving OS of patients with H3K27-altered DMG. When feasible another systemic treatment after treatment progression could be proposed.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Temozolomida/uso terapêutico , Estudos Retrospectivos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Antineoplásicos Alquilantes/uso terapêutico , Glioma/tratamento farmacológico , Glioma/patologia , Dacarbazina/uso terapêutico , Quimioterapia Adjuvante
11.
Cancer Lett ; 588: 216711, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38423245

RESUMO

Five-year glioblastoma (GBM) survivors (LTS) are the minority of the isocitrate dehydrogenase (IDH)-wild-type GBM patients, and their molecular fingerprint is still largely unexplored. This multicenter retrospective study analyzed a large LTS-GBM cohort from nine Italian institutions and molecularly characterized a subgroup of patients by mutation, DNA methylation (DNAm) and copy number variation (CNV) profiling, comparing it to standard survival GBM. Mutation scan allowed the identification of pathogenic variants in most cases, showing a similar mutational spectrum in both groups, and highlighted TP53 as the most commonly mutated gene in the LTS group. We confirmed DNAm as a valuable tool for GBM classification with a diagnostic refinement by using brain tumor classifier v12.5. LTS were more heterogeneous with more cases classified as diffuse pediatric high-grade glioma subtypes and having peculiar CNVs. We observed a global higher methylation in CpG islands and in gene promoters of LTS with methylation levels of distinct gene promoters correlating with prognosis.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Criança , Glioblastoma/patologia , Estudos Retrospectivos , Isocitrato Desidrogenase/genética , Variações do Número de Cópias de DNA , Neoplasias Encefálicas/patologia , Mutação , Prognóstico , Metilação de DNA , Sobreviventes
12.
Clin Epigenetics ; 16(1): 9, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178234

RESUMO

BACKGROUND: Malignant peripheral nerve sheath tumors (MPNSTs) account for 3-10% of pediatric sarcomas, 50% of which occur in neurofibromatosis type 1 (NF1). Sporadic MPNSTs diagnosis may be challenging due to the absence of specific markers, apart from immunohistochemical H3K27me3 loss. DNA methylation (DNAm) profiling is a useful tool for brain and mesenchymal neoplasms categorization, and MPNSTs exhibit a specific DNAm signature. An MPNST-like group has recently been recognized, including pediatric tumors with retained H3K27me3 mark and clinical/histological features not yet well explored. This study aims to characterize the DNAm profile of pediatric/juvenile MPNSTs/MPNST-like entities and its diagnostic/prognostic relevance. RESULTS: We studied 42 tumors from two groups. Group 1 included 32 tumors histologically diagnosed as atypical neurofibroma (ANF) (N = 5) or MPNST (N = 27); group 2 comprised 10 tumors classified as MPNST-like according to Heidelberg sarcoma classifier. We performed further immunohistochemical and molecular tests to reach an integrated diagnosis. In group 1, DNAm profiling was inconclusive for ANF; while, it confirmed the original diagnosis in 12/27 MPNSTs, all occurring in NF1 patients. Five/27 MPNSTs were classified as MPNST-like: Integrated diagnosis confirmed MPNST identity for 3 cases; while, the immunophenotype supported the change to high-grade undifferentiated spindle cell sarcoma in 2 samples. The remaining 10/27 MPNSTs variably classified as schwannoma, osteosarcoma, BCOR-altered sarcoma, rhabdomyosarcoma (RMS)-MYOD1 mutant, RMS-like, and embryonal RMS or did not match with any defined entity. Molecular analysis and histologic review confirmed the diagnoses of BCOR, RMS-MYOD1 mutant, DICER1-syndrome and ERMS. Group 2 samples included 5 high-grade undifferentiated sarcomas/MPNSTs and 5 low-grade mesenchymal neoplasms. Two high-grade and 4 low-grade lesions harbored tyrosine kinase (TRK) gene fusions. By HDBSCAN clustering analysis of the whole cohort we identified two clusters mainly distinguished by H3K27me3 epigenetic signature. Exploring the copy number variation, high-grade tumors showed frequent chromosomal aberrations and CDKN2A/B loss significantly impacted on survival in the MPNSTs cohort. CONCLUSION: DNAm profiling is a useful tool in diagnostic work-up of MPNSTs. Its application in a retrospective series collected during pre-molecular era contributed to classify morphologic mimics. The methylation group MPNST-like is a 'hybrid' category in pediatrics including high-grade and low-grade tumors mainly characterized by TRK alterations.


Assuntos
Neoplasias Ósseas , Neurofibrossarcoma , Rabdomiossarcoma , Sarcoma , Humanos , Criança , Neurofibrossarcoma/diagnóstico , Neurofibrossarcoma/genética , Neurofibrossarcoma/patologia , Histonas/metabolismo , Metilação de DNA , Estudos Retrospectivos , Variações do Número de Cópias de DNA , Sarcoma/diagnóstico , Sarcoma/genética , Sarcoma/patologia , Proteínas Tirosina Quinases , Ribonuclease III , RNA Helicases DEAD-box
13.
Eur J Pediatr ; 183(4): 1485-1497, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38206395

RESUMO

Central nervous system (CNS) tumours in neonates are relatively rare and present differently when compared with those occurring later in childhood in terms of aetiology, clinical features, location, histology and prognosis. The clinical presentation is extremely variable. Even if the most frequent clinical sign is a macrocephaly, there are many other non-specific symptoms associated. The prognosis is usually poor with overall survival of less than 30%. Surgery continues to be the primary treatment for neonatal CNS tumours, aiming for a gross total resection, directly correlated with prognosis and the overall outcome. The chemotherapy is the only adjuvant therapy whereas the radiotherapy is avoided under three years of age because of the severe sequelae. Hence the importance of molecular characterization of these neoplasms in order to improve the accuracy of the diagnosis and identify new therapeutic targets. The aim of this review is to describe the main characteristics of these tumours and the recent advances in their treatment in order to recognize these pathologies in the prenatal period and create a multidisciplinary team providing the best possible treatment while minimising the risk of long-term complications. Neonatologists play a key role in the early detection, diagnostic evaluation, management and supportive care of these neonates.  Conclusion: The aim of this review is to describe the main characteristics of these tumours and the recent advances in their treatment in order to ensure the essential knowledge that will help the neonatologist identify them and create a multidisciplinary team providing the best possible treatment while minimising the risk of long-term complications. What is Known: • Neonatal CNS tumours are relatively rare and their early identification is important to identify the best diagnostic-therapeutic management. • Surgery is the main treatment of neonatal CNS tumours. The extent of surgical resection directly correlates with prognosis and outcome. What is New: • Predisposing conditions such as Cancer Predisposition Syndromes must be considered. • Targeted drugs and other therapeutic strategies can be identified through molecular characterization.


Assuntos
Neoplasias do Sistema Nervoso Central , Neonatologistas , Recém-Nascido , Humanos , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/terapia , Prognóstico , Terapia Combinada , Progressão da Doença
14.
Cell Death Differ ; 31(2): 170-187, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38062245

RESUMO

The Sonic Hedgehog (SHH) pathway is crucial regulator of embryonic development and stemness. Its alteration leads to medulloblastoma (MB), the most common malignant pediatric brain tumor. The SHH-MB subgroup is the best genetically characterized, however the molecular mechanisms responsible for its pathogenesis are not fully understood and therapeutic benefits are still limited. Here, we show that the pro-oncogenic stemness regulator Spalt-like transcriptional factor 4 (SALL4) is re-expressed in mouse SHH-MB models, and its high levels correlate with worse overall survival in SHH-MB patients. Proteomic analysis revealed that SALL4 interacts with REN/KCTD11 (here REN), a substrate receptor subunit of the Cullin3-RING ubiquitin ligase complex (CRL3REN) and a tumor suppressor lost in ~30% of human SHH-MBs. We demonstrate that CRL3REN induces polyubiquitylation and degradation of wild type SALL4, but not of a SALL4 mutant lacking zinc finger cluster 1 domain (ΔZFC1). Interestingly, SALL4 binds GLI1 and cooperates with HDAC1 to potentiate GLI1 deacetylation and transcriptional activity. Notably, inhibition of SALL4 suppresses SHH-MB growth both in murine and patient-derived xenograft models. Our findings identify SALL4 as a CRL3REN substrate and a promising therapeutic target in SHH-dependent cancers.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Animais , Humanos , Camundongos , Proteínas de Ciclo Celular , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Proteômica , Fatores de Transcrição/genética , Transferases , Proteína GLI1 em Dedos de Zinco/genética
15.
Mod Pathol ; 37(2): 100387, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38007157

RESUMO

PATZ1-rearranged sarcomas are well-recognized tumors as part of the family of round cell sarcoma with EWSR1-non-ETS fusions. Whether PATZ1-rearranged central nervous system (CNS) tumors are a distinct tumor type is debatable. We thoroughly characterized a pediatric series of PATZ1-rearranged CNS tumors by chromosome microarray analysis (CMA), DNA methylation analysis, gene expression profiling and, when frozen tissue is available, optical genome mapping (OGM). The series consisted of 7 cases (M:F=1.3:1, 1-17 years, median 12). On MRI, the tumors were supratentorial in close relation to the lateral ventricles (intraventricular or iuxtaventricular), preferentially located in the occipital lobe. Two major histologic groups were identified: one (4 cases) with an overall glial appearance, indicated as "neuroepithelial" (NET) by analogy with the corresponding methylation class (MC); the other (3 cases) with a predominant spindle cell sarcoma morphology, indicated as "sarcomatous" (SM). A single distinct methylation cluster encompassing both groups was identified by multidimensional scaling analysis. Despite the epigenetic homogeneity, unsupervised clustering analysis of gene expression profiles revealed 2 distinct transcriptional subgroups correlating with the histologic phenotypes. Interestingly, genes implicated in epithelial-mesenchymal transition and extracellular matrix composition were enriched in the subgroup associated to the SM phenotype. The combined use of CMA and OGM enabled the identification of chromosome 22 chromothripsis in all cases suitable for the analyses, explaining the physical association of PATZ1 to EWSR1 or MN1. Six patients are currently disease-free (median follow-up 30 months, range 12-92). One patient of the SM group developed spinal metastases at 26 months from diagnosis and is currently receiving multimodal therapy (42 months). Our data suggest that PATZ1-CNS tumors are defined by chromosome 22 chromothripsis as causative of PATZ1 fusion, show peculiar MRI features (eg, relation to lateral ventricles, supratentorial frequently posterior site), and, although epigenetically homogenous, encompass 2 distinct histologic and transcriptional subgroups.


Assuntos
Cromotripsia , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Criança , Fatores de Transcrição/genética , Sarcoma/genética , Proteína EWS de Ligação a RNA/genética , Sistema Nervoso Central/patologia , Transcriptoma , Neoplasias de Tecidos Moles/genética , Proteínas Repressoras/genética , Fatores de Transcrição Kruppel-Like/genética
17.
Front Oncol ; 13: 1203994, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094610

RESUMO

Background: Intracranial mesenchymal tumors are a rare type of neoplasm (0.3% of all soft tissue tumors) characterized by a fusion of a FET family gene (usually EWSR1, rarely FUS) to CREB family genes (CREB1, ATF1, and CREM) with a slow-growing and favorable prognosis. Mesenchymal tumors are most frequently localized in the subcutaneous tissue (typically in the limbs and hands) of young adults and have rarely been diagnosed in the central nervous system. Surgery is the gold standard treatment; adjuvant radiation therapy and chemotherapy with sarcoma-based regimens have been used in rare cases when complete surgical excision was not recommended. In terms of prognosis, these tumors show a tendency for local relapse. The longest patient outcomes reported in the literature are five years. Case description: This case describes a 27-year-old woman with unconventional extracranial metastatic sites of myxoid intracranial mesenchymal tumor FET::CREB fusion-positive and high expression of PD-1 (40%) and PD-L1 (30%). Based on clinical, molecular, and histological characteristics, she underwent various local and systemic therapies, including surgery, proton beam therapy, the use of immune checkpoint inhibitors, and chemotherapy. These treatments led to a complete remission of the disease after eight years from tumor diagnosis. Conclusions: Our case sheds light on the importance of precision medicine and tailored therapy to explore new treatment opportunities for rare or unknown tumor entities.

18.
EMBO Mol Med ; 15(12): e18199, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38037472

RESUMO

Brain tumors are the leading cause of cancer-related death in children. Experimental in vitro models that faithfully capture the hallmarks and tumor heterogeneity of pediatric brain cancers are limited and hard to establish. We present a protocol that enables efficient generation, expansion, and biobanking of pediatric brain cancer organoids. Utilizing our protocol, we have established patient-derived organoids (PDOs) from ependymomas, medulloblastomas, low-grade glial tumors, and patient-derived xenograft organoids (PDXOs) from medulloblastoma xenografts. PDOs and PDXOs recapitulate histological features, DNA methylation profiles, and intratumor heterogeneity of the tumors from which they were derived. We also showed that PDOs can be xenografted. Most interestingly, when subjected to the same routinely applied therapeutic regimens, PDOs respond similarly to the patients. Taken together, our study highlights the potential of PDOs and PDXOs for research and translational applications for personalized medicine.


Assuntos
Bancos de Espécimes Biológicos , Neoplasias Encefálicas , Humanos , Criança , Xenoenxertos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Organoides/patologia
19.
Front Oncol ; 13: 1235794, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144536

RESUMO

The family of the neurotrophic tyrosine kinase receptor (NTRK) gene encodes for members of the tropomyosin receptor kinase (TRK) family. Rearrangements involving NTRK1/2/3 are rare oncogenic factors reported with variable frequencies in an extensive range of cancers in pediatrics and adult populations, although they are more common in the former than in the latter. The alterations in these genes are causative of the constitutive activation of TRKs that drive carcinogenesis. In 2017, first-generation TRK inhibitor (TRKi) larotrectinib was granted accelerated approval from the FDA, having demonstrated histologic-agnostic activity against NTRKs fusions tumors. Since this new era has begun, resistance to first-generation TRKi has been described and has opened the development of second-generation molecules, such as selitrectinib and repotrectinib. In this review, we provide a brief overview of the studies on NTRK alterations found in pediatric central nervous system tumors and first and second-generation TRKi useful in clinical practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...