Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 260: 119618, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39009211

RESUMO

Lignites are widely available and cost-effective in many countries. Sustainable methods for their utilization drive innovation, potentially advancing environmental sustainability and resource efficiency. In the present study, Fe3O4 (∼25.1 nm) supported on KOH-activated lignite (A-L) displayed 8 times higher phosphate removal than pristine A-L (67.6 mg/g vs. 8.5 mg/g at pH 5, 50 mg of absorbent in 25 mL of 1500 ppm [phosphate]), owing to its abundant Fe3O4 (10 wt% of Fe) nanoparticle content. The removal occurred within ∼2 h, following a pseudo-second-order kinetic model. Across pH levels ranging from 5.0 to 9.0, Fe3O4-A-L's phosphate removal occurs via both chemisorption and precipitation, as evident by kinetic, pH, and XPS analyses. The phosphate adsorption fits better with the Freundlich isotherm. The combined benefits of facile recovery, rapid phosphate uptake, straightforward regeneration, and attractive post-adsorption benefits (e.g., possibly use as a Fe, P-rich fertilizer) make magnetic Fe3O4-A-L a promising candidate for real-world applications. Artificial Neural Network (ANN) modeling indicates an excellent accuracy (R2 = 0.99) in predicting the amount of phosphate removed by Fe3O4-A-L. Sensitivity analysis revealed both temperature and initial concentration as the most influencing factors. Leveraging lignite in environmentally friendly applications not only addresses immediate challenges but also aligns with sustainability goals. The study clearly articulates the potential benefits of utilizing lignite for sustainable phosphate removal and recovery, offering avenues for mitigating environmental concerns while utilizing resources efficiently.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38625466

RESUMO

Despite sporadic and irregular studies on heavy metal(loid)s health risks in water, fish, and soil in the coastal areas of the Bay of Bengal, no chemometric approaches have been applied to assess the human health risks comprehensively. This review aims to employ chemometric analysis to evaluate the long-term spatiotemporal health risks of metal(loid)s e.g., Fe, Mn, Zn, Cd, As, Cr, Pb, Cu, and Ni in coastal water, fish, and soils from 2003 to 2023. Across coastal parts, studies on metal(loid)s were distributed with 40% in the southeast, 28% in the south-central, and 32% in the southwest regions. The southeastern area exhibited the highest contamination levels, primarily due to elevated Zn content (156.8 to 147.2 mg/L for Mn in water, 15.3 to 13.2 mg/kg for Cu in fish, and 50.6 to 46.4 mg/kg for Ni in soil), except for a few sites in the south-central region. Health risks associated with the ingestion of Fe, As, and Cd (water), Ni, Cr, and Pb (fish), and Cd, Cr, and Pb (soil) were identified, with non-carcinogenic risks existing exclusively through this route. Moreover, As, Cr, and Ni pose cancer risks for adults and children via ingestion in the southeastern region. Overall non-carcinogenic risks emphasized a significantly higher risk for children compared to adults, with six, two-, and six-times higher health risks through ingestion of water, fish, and soils along the southeastern coast. The study offers innovative sustainable management strategies and remediation policies aimed at reducing metal(loid)s contamination in various environmental media along coastal Bangladesh.

3.
Chemosphere ; 356: 141877, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579948

RESUMO

This study investigated the catalytic activity of biochar materials derived from algal biomass Sargassum fusiforme (S. fusiforme) for groundwater remediation. A facile single-step pyrolysis process was used to prepare S. fusiforme biochar (SFBCX), where x denotes pyrolysis temperatures (600 °C-900 °C). The surface characterization revealed that SFBC800 possesses intrinsic N and P heteroatoms. The optimum experimental condition for acetaminophen (AAP) degradation (>98.70%) was achieved in 60 min using 1.0 mM peroxymonosulfate (PMS), 100 mg L-1 SFBC800, and pH 5.8 (unadjusted). Moreover, the degradation rate constant (k) was evaluated by the pseudo-first-order kinetic model. The maximum degradation (>98.70%) of AAP was achieved within 60 min of oxidation. Subsequently, the k value was calculated to be 6.7 × 10-2 min-1. The scavenger tests showed that radical and nonradical processes are involved in the SFBC800/PMS system. Moreover, the formation of reactive oxygen species (ROS) in the SFBC800/PMS system was confirmed using electron spin resonance (ESR) spectroscopy. Intriguingly, both radical (O2•-, •OH, and SO4•-) and nonradical (1O2) ROS were formed in the SFBC800/PMS system. In addition, electrochemical studies were conducted to verify the electron transfer process of the nonradical mechanism in the SFBC800/PMS system. The scavenger and electron spin resonance (ESR) spectroscopy showed that singlet oxygen (1O2) is the predominant component in AAP degradation. Under optimal condition, the SFBC800/PMS system reached ∼81% mineralization of AAP within 5 min and continued to ∼85% achieved over 60 min of oxidation. Coexisting ions and different aqueous matrices were investigated to examine the feasibility of the catalyst system, and the SFBC800/PMS system was found to be effective in the remediation of AAP-contaminated groundwater, river water, and effluent water obtained from wastewater treatment plants. Moreover, the SFBC800-activated PMS system demonstrated reusability. Our findings indicate that the SFBC800 catalyst has excellent catalytic activity for AAP degradation in aquatic environments.


Assuntos
Acetaminofen , Carvão Vegetal , Algas Comestíveis , Sargassum , Poluentes Químicos da Água , Carvão Vegetal/química , Poluentes Químicos da Água/química , Acetaminofen/química , Sargassum/química , Peróxidos/química , Alga Marinha/química , Cinética , Oxirredução , Água Subterrânea/química , Recuperação e Remediação Ambiental/métodos , Espécies Reativas de Oxigênio
4.
Sci Total Environ ; 926: 171944, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527542

RESUMO

Fluoroquinolone (FQ) antibiotics have become a subject of growing concern due to their increasing presence in the environment, particularly in the soil and groundwater. This review provides a comprehensive examination of the attributes, prevalence, ecotoxicity, and remediation approaches associated with FQs in environmental matrices. The paper discusses the physicochemical properties that influence the fate and transport of FQs in soil and groundwater, exploring the factors contributing to their prevalence in these environments. Furthermore, the ecotoxicological implications of FQ contamination in soil and aquatic ecosystems are reviewed, shedding light on the potential risks to environmental and human health. The latter part of the review is dedicated to an extensive analysis of remediation approaches, encompassing both in-situ and ex-situ methods employed to mitigate FQ contamination. The critical evaluation of these remediation strategies provides insights into their efficacy, limitations, and environmental implications. In this investigation, a correlation between FQ antibiotics and climate change is established, underlining its significance in addressing the Sustainable Development Goals (SDGs). The study further identifies and delineates multiple research gaps, proposing them as key areas for future investigational directions. Overall, this review aims to consolidate current knowledge on FQs in soil and groundwater, offering a valuable resource for researchers, policymakers, and practitioners engaged in environmental management and public health.


Assuntos
Antibacterianos , Ecossistema , Humanos , Antibacterianos/análise , Fluoroquinolonas/análise , Ecotoxicologia , Solo/química
5.
J Environ Manage ; 351: 119714, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056328

RESUMO

Evapotranspiration (ETo) is a complex and non-linear hydrological process with a significant impact on efficient water resource planning and long-term management. The Penman-Monteith (PM) equation method, developed by the Food and Agriculture Organization of the United Nations (FAO), represents an advancement over earlier approaches for estimating ETo. Eto though reliable, faces limitations due to the requirement for climatological data not always available at specific locations. To address this, researchers have explored soft computing (SC) models as alternatives to conventional methods, known for their exceptional accuracy across disciplines. This critical review aims to enhance understanding of cutting-edge SC frameworks for ETo estimation, highlighting advancements in evolutionary models, hybrid and ensemble approaches, and optimization strategies. Recent applications of SC in various climatic zones in Bangladesh are evaluated, with the order of preference being ANFIS > Bi-LSTM > RT > DENFIS > SVR-PSOGWO > PSO-HFS due to their consistently high accuracy (RMSE and R2). This review introduces a benchmark for incorporating evolutionary computation algorithms (EC) into ETo modeling. Each subsection addresses the strengths and weaknesses of known SC models, offering valuable insights. The review serves as a valuable resource for experienced water resource engineers and hydrologists, both domestically and internationally, providing comprehensive SC modeling studies for ETo forecasting. Furthermore, it provides an improved water resources monitoring and management plans.


Assuntos
Algoritmos , Computação Flexível , Bangladesh , Hidrologia , Agricultura
6.
Environ Pollut ; 341: 122940, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37984475

RESUMO

Incidental pesticide application on farmlands can result in contamination of off-target biota, soil, groundwater, and surrounding ecosystems. To manage these pesticide contaminations sustainably, it is important to utilize advanced approaches to pesticide decontamination. This review assesses various innovative strategies applied for remediating pesticide-contaminated sites, including physical, chemical, biological, and nanoremediation. Integrated remediation approaches appear to be more effective than singular technologies. Bioremediation and chemical remediation are considered suitable and sustainable strategies for decontaminating contaminated soils. Furthermore, this study highlights key mechanisms underlying advanced pesticide remediation that have not been systematically studied. The transformation of applied pesticides into metabolites through various biotic and chemical triggering factors is well documented. Ex-situ and in-situ technologies are the two main categories employed for pesticide remediation. However, when selecting a remediation technique, it is important to consider factors such as application sites, cost-effectiveness, and specific purpose. In this review, the sustainability of existing pesticide remediation strategies is thoroughly analyzed as a pioneering effort. Additionally, the study summarizes research uncertainties and technical challenges associated with different remediation approaches. Lastly, specific recommendations and policy advocacy are suggested to enhance contemporary remediation approaches for cleaning up pesticide-contaminated sites.


Assuntos
Recuperação e Remediação Ambiental , Praguicidas , Poluentes do Solo , Ecossistema , Biodegradação Ambiental , Poluentes do Solo/análise , Solo
7.
J Contam Hydrol ; 260: 104284, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101231

RESUMO

Microplastic (MP) pollution has evolved into a significant worldwide environmental concern due to its widespread sources, enduring presence, and adverse effects on lentic ecosystems and human well-being. The growing awareness of the hidden threat posed by MPs in lentic ecosystems has emphasized the need for more in-depth research. Unlike marine environments, there remain unanswered questions about MP hotspots, ecotoxic effects, transport mechanisms, and fragmentation in lentic ecosystems. The introduction of MPs represents a novel threat to long-term environmental health, posing unresolved challenges for sustainable management. While MP pollution in lentic ecosystems has garnered global attention due to its ecotoxicity, our understanding of MP hotspots in lakes from an Asian perspective remains limited. Hence, the aim of this review is to provide a comprehensive analysis of MP hotspots, morphological attributes, ecotoxic impacts, sustainable solutions, and future challenges across Asia. The review summarizes the methods employed in previous studies and the techniques for sampling and analyzing microplastics in lake water and sediment. Notably, most studies concerning lake microplastics tend to follow the order of China > India > Pakistan > Nepal > Turkey > Bangladesh. Additionally, this review critically addresses the analysis of microplastics in lake water and sediment, shedding light on the prevalent net-based sampling methods. Ultimately, this study emphasizes the existing research gaps and suggests new research directions, taking into account recent advancements in the study of microplastics in lentic environments. In conclusion, the review advocates for sustainable interventions to mitigate MP pollution in the future, highlighting the presence of MPs in Asian lakes, water, and sediment, and their potential ecotoxicological repercussions on both the environment and human health.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Ecossistema , Poluentes Químicos da Água/análise , Lagos , Água , Monitoramento Ambiental/métodos
8.
Sci Total Environ ; 904: 166813, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37683867

RESUMO

Biochar, a carbon-rich material produced from the pyrolysis of organic biomass, has gained significant attention as a potential solution for sustainable green remediation practices. Several studies analyze biomass-derived biochar techniques and environmental applications, but comprehensive assessments of biochar limitations, uncertainty, and future research directions still need to be improved. This critical review aims to present a comprehensive analysis of biochar's efficacy in environmental applications, including soil, water, and air, by sequentially addressing its preparation, application, and associated challenges. The review begins by delving into the diverse methods of biochar production, highlighting their influence on physical and chemical properties. This review explores the diverse applications of biochar in remediating contaminated soil, water, and air while emphasizing its sustainability and eco-friendly characteristics. The focus is on incorporating biochar as a remediation technique for pollutant removal, sequestration, and soil improvement. The review highlights the promising results obtained from laboratory-scale experiments, field trials, and case studies, showcasing the effectiveness of biochar in mitigating contaminants and restoring ecosystems. The environmental benefits and challenges of biochar production, characterization, and application techniques are critically discussed. The potential synergistic effects of combining biochar with other remediation methods are also explored to enhance its efficacy. A rigorous analysis of the benefits and drawbacks of biochar for diverse environmental applications in terms of technical, environmental, economic, and social issues is required to support the commercialization of biochar for large-scale uses. Finally, future research directions and recommendations are presented to facilitate the development and implementation of biochar-based, sustainable green remediation strategies.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Ecossistema , Incerteza , Carvão Vegetal/química , Solo/química , Poluentes do Solo/química , Água
9.
Chemosphere ; 332: 138861, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37150456

RESUMO

Contamination of the natural ecosystem by heavy metals, organic pollutants, and hazardous waste severely impacts on health and survival of humans, animals, plants, and microorganisms. Diverse chemical and physical treatments are employed in many countries, however, the acceptance of these treatments are usually poor because of taking longer time, high cost, and ineffectiveness in contaminated areas with a very high level of metal contents. Bioremediation is an eco-friendly and efficient method of reclaiming contaminated soils and waters with heavy metals through biological mechanisms using potential microorganisms and plant species. Considering the high efficacy, low cost, and abundant availability of biological materials, particularly bacteria, algae, yeasts, and fungi, either in natural or genetically engineered (GE) form, bioremediation is receiving high attention for heavy metal removal. This report comprehensively reviews and critically discusses the biological and green remediation tactics, contemporary technological advances, and their principal applications either in-situ or ex-situ for the remediation of heavy metal contamination in soil and water. A modified PRISMA review protocol is adapted to critically assess the existing research gaps in heavy metals remediation using green and biological drivers. This study pioneers a schematic illustration of the underlying mechanisms of heavy metal bioremediation. Precisely, it pinpoints the research bottleneck during its real-world application as a low-cost and sustainable technology.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Animais , Solo , Água , Ecossistema , Biodegradação Ambiental , Plantas
10.
Chemosphere ; 312(Pt 1): 137120, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334750

RESUMO

This study explored pre-adsorption and sequential injection of dual oxidant (DuOx) of persulfate (PS) and calcium peroxide (CP) for phenol degradation in an aqueous solution. Ball-milled activated carbon (ACBM) was used as the catalyst in the following systems: pre-adsorption and sequential injection of PS and CP (ACBM + PS + CP), pre-adsorption and simultaneous injection of PS and CP (ACBM + PS/CP), simultaneous injection of ACBM, PS, and CP (ACBM/PS/CP), simultaneous injection of ACBM and PS (ACBM/PS), and simultaneous injection of ACBM and CP (ACBM/CP). The ACBM had a larger specific surface area, more graphitic structures, and more defects. Moreover, it showed better phenol removal when introduced simultaneously with PS and CP. The phenol removal was most the efficient in ACBM + PS + CP (98.8%) with a near-neutral final pH, followed by ACBM + PS/CP, ACBM/PS, ACBM/PS/CP, and ACBM/CP. This indicates that pre-adsorption and separate injection of PS and CP were the key strategy for improved performance and maintained favorable pH for the activation of PS and CP. The dual oxidant system (PS/CP) is superior to single oxidant systems (PS or CP). Scavenger experiments and the electron spin resonance spectra (ESR) demonstrated that non-radical species (1O2) were dominantly involved in ACBM + PS + CP, but radical species (HO•, SO4•-) also contributed. HCO3- and HPO42- inhibited phenol degradation in ACBM + PS + CP, whereas Cl- and HA had negligible effects. The ACBM + PS + CP showed high total organic carbon removal and ACBM was recyclable with a slight decrease in activity. This work is important as it provides a detailed insight into the strategy of pre-adsorption and sequential injection of dual oxidants for a practical and cost-effective method of groundwater remediation.


Assuntos
Fenol , Poluentes Químicos da Água , Fenol/química , Carvão Vegetal , Oxidantes , Poluentes Químicos da Água/análise , Oxirredução , Fenóis
11.
Environ Res ; 214(Pt 3): 113882, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35931187

RESUMO

In-situ chemical oxidation (ISCO) based on peroxide activation is one of the most promising technologies for removing organic contaminants from natural groundwater (NGW). However, use of the most common form of hydrogen peroxide (H2O2) is limited owing to its significantly rapid reaction rate and heat generation. Therefore, in the present study, the activation of calcium peroxide (CaO2), a slow H2O2 releasing agent, by Fe(II) was proposed (CaO2/Fe(II)), and the phenol degradation mechanisms and feasibility of NGW remediation were investigated. The optimum molar ratio of [phenol]/[CaO2]/[Fe(II)] (phenol = 0.5 mM) was 1/10/10, resulting in 87.0-92.5% phenol removal within 120 min under a broad initial pH range of 3-9. HCO3-, PO43-, and humic acid significantly inhibited degradation, whereas the effects of Cl-, NO3-, and SO42- were negligible. Reactive oxygen species (ROS) were identified based on the results of phenol degradation in the presence of scavengers and electron spin resonance (ESR) spectroscopy, which demonstrated that 1O2 played the dominant role, supported by •OH, in CaO2/Fe(II). Phenol removal in NGW (67.81%) was less than that in distilled and deionized water (DIW, 92.5%) at a [phenol]/[CaO2]/[Fe(II)] ratio of 1/10/10. However, phenol removal was significantly improved (∼100%) by increasing the CaO2 and Fe(II) doses to 1/20/20-40. Furthermore, when 125-250 mg L-1 of ball-milled activated carbon (ACBM) was added (CaO2/Fe(II)-ACBM), phenol removal was enhanced from 67.81% to 90.94-100% in the NGW. CaO2/Fe(II)-ACBM exhibited higher total organic carbon (TOC) removal than CaO2/Fe(II). In addition, no notable by-products were detected using CaO2/Fe(II)-ACBM, whereas the polymerisation products of hydroxylated and/or ring-cleaved compounds, that is, aconitic acid, gallocatechin, and 10-hydroxyaloin, were found in the reaction with CaO2/Fe(II). These results strongly suggest that CaO2/Fe(II)-ACBM is highly promising for groundwater remediation, minimizing degradation byproducts and the adverse effects caused by the NGW components.


Assuntos
Fenol , Poluentes Químicos da Água , Carvão Vegetal , Compostos Ferrosos , Peróxido de Hidrogênio/química , Oxirredução , Fenóis , Poluentes Químicos da Água/química
12.
Chemosphere ; 299: 134392, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35331746

RESUMO

This study demonstrates the feasibility, reaction mechanisms, and potential of practical applications of a dual oxidant (DuOx) system comprising calcium peroxide (CP) and persulfate (PS) catalyzed using Fe(II) [PS/CP/Fe(II)]. The DuOx system was superior in phenol degradation to single oxidant systems, i.e., PS/Fe(II) or CP/Fe(II), with 95.5% phenol removal under an optimum condition of a phenol/PS/CP/Fe(II) molar ratio of 1/1/5/6 ([Phenol]0=0.5 mM). Based on scavenger studies and electron spin resonance (ESR) spectroscopy, the phenol removal in the DuOx system was barrierless, with negative activation energy assisted by robust reactive species. The phenol degradation results in the presence of methanol, t-butanol, l-histidine, and NaN3. The ESR spectroscopy indicates that phenol degradation is attributed dominantly to 1O2 generated by recombining O2•- and radicals, such as hydroxyl (HO•) and sulfate (SO4•-). The performance of the DuOx system was highly efficient in pH 3-11, up to 10 mM Cl-, SO42-, or NO3-, and up to 50 mg/L humic acids but was strongly suppressed by more than 10 mM HCO3- and H2PO4-. In addition, the DuOx system was efficient in phenol removal in natural groundwater as well as removing and mineralizing other phenolic compounds (PCs) such as bisphenol A, chlorophenol, dichlorophenol, trichlorophenol, and nitrophenol. These results provide insights into the reactions induced by the DuOx system and confirm its applicability of in situ chemical oxidation in refractory organic pollutants.


Assuntos
Oxidantes , Poluentes Químicos da Água , Compostos Ferrosos/química , Oxirredução , Peróxidos , Fenol , Fenóis , Sulfatos/química , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...