Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 15(10): 1318-1330, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28710231

RESUMO

Tuberous sclerosis complex (TSC) is a tumor-suppressor syndrome affecting multiple organs, including the brain, skin, kidneys, heart, and lungs. TSC is associated with mutations in TSC1 or TSC2, resulting in hyperactivation of mTOR complex 1 (mTORC1). Clinical trials demonstrate that mTORC1 inhibitors decrease tumor volume and stabilize lung function in TSC patients; however, mTOR inhibitors are cytostatic not cytocidal, and long-term benefits and toxicities are uncertain. Previously, we identified rapamycin-insensitive upregulation of cyclooxygenase 2 (PTGS2/COX2) and prostaglandin E2 (PGE2) production in TSC2-deficient cells and postulated that the action of excess PGE2 and its cognate receptors (EP) contributes to cell survival. In this study, we identify upregulation of EP3 (PTGER3) expression in TSC2-deficient cells, TSC renal angiomyolipomas, lymphangioleiomyomatosis lung nodules, and epileptic brain tubers. TSC2 negatively regulated EP3 expression via Rheb in a rapamycin-insensitive manner. The EP3 antagonist, L-798106, selectively suppressed the viability of TSC2-deficient cells in vitro and decreased the lung colonization of TSC2-deficient cells. Collectively, these data reveal a novel function of TSC2 and Rheb in the regulation of EP3 expression and cell viability.Implications: Therapeutic targeting of an aberrant PGE2-EP3 signaling axis may have therapeutic benefit for TSC patients and for other mTOR-hyperactive neoplasms. Mol Cancer Res; 15(10); 1318-30. ©2017 AACR.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Angiomiolipoma/genética , Angiomiolipoma/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Criança , Pré-Escolar , Epilepsia/genética , Epilepsia/metabolismo , Feminino , Humanos , Lactente , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Linfangioleiomiomatose/genética , Linfangioleiomiomatose/metabolismo , Masculino , Camundongos , Mutação , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/deficiência , Regulação para Cima
2.
JCI Insight ; 1(19): e86629, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27882343

RESUMO

Lymphangioleiomyomatosis (LAM) is a progressive lung disease that primarily affects young women. Genetic evidence suggests that LAM cells bearing TSC2 mutations migrate to the lungs, proliferate, and cause cystic remodeling. The female predominance indicates that estrogen plays a critical role in LAM pathogenesis, and we have proposed that estrogen promotes LAM cell metastasis by inhibition of anoikis. We report here that estrogen increased LAM patient-derived cells' resistance to anoikis in vitro, accompanied by decreased accumulation of the proapoptotic protein Bim, an activator of anoikis. The resistance to anoikis was reversed by the proteasome inhibitor, bortezomib. Treatment of LAM patient-derived cells with estrogen plus bortezomib promoted anoikis compared with estrogen alone. Depletion of Bim by siRNA in TSC2-deficient cells resulted in anoikis resistance. Treatment of mice with bortezomib reduced estrogen-promoted lung colonization of TSC2-deficient cells. Importantly, molecular depletion of Bim by siRNA in Tsc2-deficient cells increased lung colonization in a mouse model. Collectively, these data indicate that Bim plays a key role in estrogen-enhanced survival of LAM patient-derived cells under detached conditions that occur with dissemination. Thus, targeting Bim may be a plausible future treatment strategy in patients with LAM.


Assuntos
Anoikis , Proteína 11 Semelhante a Bcl-2/metabolismo , Estrogênios/fisiologia , Pneumopatias/patologia , Linfangioleiomiomatose/patologia , Proteínas Supressoras de Tumor/genética , Animais , Bortezomib/farmacologia , Feminino , Humanos , Pulmão/citologia , Camundongos , Camundongos SCID , Proteína 2 do Complexo Esclerose Tuberosa , Células Tumorais Cultivadas
3.
Cell Signal ; 28(12): 1904-1915, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27634387

RESUMO

The major biological function of mitochondria is to generate cellular energy through oxidative phosphorylation. Apart from cellular respiration, mitochondria also play a key role in signaling processes, including aging and cancer metabolism. It has been shown that S6K1-knockout mice are resistant to obesity due to enhanced beta-oxidation, with an increased number of large mitochondria. Therefore, in this report, the possible involvement of S6K1 in regulating mitochondria dynamics and function has been investigated in stable lenti-shS6K1-HeLa cells. Interestingly, S6K1-stably depleted HeLa cells showed phenotypical changes in mitochondria morphology. This observation was further confirmed by detailed image analysis of mitochondria shape. Corresponding molecular changes were also observed in these cells, such as the induction of mitochondrial fission proteins (Drp1 and Fis1). Oxygen consumption is elevated in S6K1-depeleted HeLa cells and FL5.12 cells. In addition, S6K1 depletion leads to enhancement of ATP production in cytoplasm and mitochondria. However, the relative ratio of mitochondrial ATP to cytoplasmic ATP is actually decreased in lenti-shS6K1-HeLa cells compared to control cells. Lastly, induction of mitophagy was found in lenti-shS6K1-HeLa cells with corresponding changes of mitochondria shape on electron microscope analysis. Taken together, our results indicate that S6K1 is involved in the regulation of mitochondria morphology and function in HeLa cells. This study will provide novel insights into S6K1 function in mitochondria-mediated cellular signaling.


Assuntos
Mitocôndrias/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Trifosfato de Adenosina/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Células HeLa , Humanos , Espaço Intracelular/metabolismo , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo
4.
Oncol Rep ; 28(3): 931-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22711061

RESUMO

Mitogen-activated protein kinase phosphatase 5 (MKP-5)/DUSP10 acts as a phosphatase of stress-activated kinases (JNK and p38), but its activity towards ERK has not been demonstrated. In the present study we observed that MKP-5 interacts with ERK, retains it in the cytoplasm, suppresses its activation and downregulates ERK-dependent transcription. These data suggested a novel MKP-5 function as a scaffold protein for the ERK pathway. We analyzed MKP-5 gene expression in several tumors, and found that it is frequently upregulated in colorectal but not in lung and breast cancer, suggesting its association with the malignant phenotype of colon cancer.


Assuntos
Carcinoma/enzimologia , Neoplasias do Colo/enzimologia , Fosfatases de Especificidade Dupla/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Linhagem Celular Tumoral , Fosfatases de Especificidade Dupla/genética , Genes Reporter , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Luciferases/biossíntese , Luciferases/genética , Sistema de Sinalização das MAP Quinases , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosforilação , Processamento de Proteína Pós-Traducional , Elementos de Resposta , Transcrição Gênica , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Mol Cell Biochem ; 352(1-2): 155-62, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21360282

RESUMO

The dual-specificity phosphatase (DUSP) 13 gene encodes two atypical DUSPs, DUSP13B/TMDP and DUSP13A/MDSP using alternative exons. DUSP13B protein is most highly expressed in testis, particularly in spermatocytes and round spermatids of the seminiferous tubules, while that of DUSP13A is restricted to skeletal muscle. Here, we show that DUSP13B inactivated MAPK activation in the order of selectivity, JNK = p38>ERK in cells, while DUSP13A did not show MAPK phosphatase activity. Reporter gene analysis showed that DUSP13B had significant inhibitory effect on AP-1-dependent gene expression, but DUSP13A did not. To our knowledge, DUSP13B is the first identified testis-specific phosphatase that inhibits stress-activated MAPKs. These data suggest an important role for DUSP13B in protection from external stress during spermatogenesis.


Assuntos
Fosfatases de Especificidade Dupla/fisiologia , Regulação da Expressão Gênica/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator de Transcrição AP-1/fisiologia , Animais , Linhagem Celular , Ativação Enzimática , Éxons , Humanos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia
6.
Dev Cell ; 18(5): 763-74, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20493810

RESUMO

Earlier, we reported that S6K1(-/-) mice have reduced body fat mass, have elevated rates of lipolysis, have severely decreased adipocyte size, and are resistant to high fat diet (HFD)-induced obesity. Here we report that adipocytes of S6K1(-/-) mice on a HFD have the capacity to increase in size to a degree comparable to that of wild-type (WT) mice, but not in number, indicating an unexpected lesion in adipogenesis. Tracing this lesion revealed that S6K1 is dispensable for terminal adipocyte differentiation, but is involved in the commitment of embryonic stem cells to early adipocyte progenitors. We further show that absence of S6K1 attenuates the upregulation of transcription factors critical for commitment to adipogenesis. These results led to the conclusion that a lack of S6K1 impairs the generation of de novo adipocytes when mice are challenged with a HFD, consistent with a reduction in early adipocyte progenitors.


Assuntos
Adipócitos/citologia , Diferenciação Celular/fisiologia , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/fisiologia , Adipócitos/patologia , Adipogenia/genética , Adipogenia/fisiologia , Tecido Adiposo Branco/anatomia & histologia , Animais , Humanos , Hiperplasia/genética , Masculino , Camundongos , Camundongos Knockout , Obesidade/genética , Obesidade/prevenção & controle , RNA Mensageiro/genética
7.
Biochem Biophys Res Commun ; 393(2): 201-6, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20122898

RESUMO

MAPK phosphatase-7 (MKP-7) was identified as a JNK-specific phosphatase. However, despite its high specificity for JNK, MKP-7 interacts also with ERK. We previously showed that as a physiological consequence of their interaction, activated ERK phosphorylates MKP-7 at Ser-446, and stabilizing MKP-7. In the present study, we analyzed MKP-7 function in activation of ERK. A time-course experiment showed that both MKP-7 and its phosphatase-dead mutant prolonged mitogen-induced ERK phosphorylation, suggesting that MKP-7 functions as a scaffold for ERK. An important immunohistological finding was that nuclear translocation of phospho-ERK following PMA stimulation was blocked by co-expressed MKP-7 and, moreover, that phospho-ERK co-localized with MKP-7 in the cytoplasm. Reporter gene analysis indicated that MKP-7 blocks ERK-mediated transcription. Overall, our data indicate that MKP-7 down-regulates ERK-dependent gene expression by blocking nuclear accumulation of phospho-ERK.


Assuntos
Citoplasma/enzimologia , Fosfatases de Especificidade Dupla/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Ativação Transcricional , Transporte Ativo do Núcleo Celular , Animais , Células COS , Núcleo Celular/enzimologia , Chlorocebus aethiops , Regulação para Baixo , Fator de Crescimento Epidérmico/farmacologia , Humanos , Fosforilação , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
8.
J Biol Chem ; 280(15): 14716-22, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15689616

RESUMO

MAPK cascades can be negatively regulated by members of the MAPK phosphatase (MKP) family. However, how MKP activity is regulated is not well characterized. MKP-7, a JNK-specific phosphatase, possesses a unique COOH-terminal stretch (CTS) in addition to domains conserved among MKP family members. The CTS contains several motifs such as a nuclear localization signal, a nuclear export signal, PEST sequences, and a serine residue (Ser-446) that can be phosphorylated by activated ERK, suggesting an important regulatory role(s).(35)S-pulse labeling experiments indicate that the half-life of MKP-7 is 1.5 h, a period significantly elongated by deleting the CTS. We also show that overexpressed MKP-7 is polyubiquitinated when co-expressed with ubiquitin and that proteasome inhibitors markedly inhibit MKP-7 degradation. We also determined that MKP-7 phosphorylated at Ser-446 has a longer half-life than unphosphorylated form of the wild type protein, as does a phospho-mimic mutant of MKP-7. These results indicate that activation of the ERK pathway strongly blocks JNK activation through stabilization of MKP-7 mediated by phosphorylation.


Assuntos
Proteínas Tirosina Fosfatases/química , Serina/química , Motivos de Aminoácidos , Animais , Células COS , Núcleo Celular/metabolismo , DNA/metabolismo , Fosfatases de Especificidade Dupla , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Deleção de Genes , Humanos , Immunoblotting , Imuno-Histoquímica , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase 4 , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno , Modelos Biológicos , Fosforilação , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Proteínas Tirosina Fosfatases/metabolismo , Fatores de Tempo , Transfecção , Ubiquitina/metabolismo
9.
Biochem J ; 383(Pt. 3): 447-55, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15281913

RESUMO

We have isolated a mouse cDNA for a novel dual-specificity phosphatase designated LDP-3 (low-molecular-mass dual-specificity phosphatase 3). The 450 bp open reading frame encodes a protein of 150 amino acids with a predicted molecular mass of 16 kDa. Northern blot and reverse transcription-PCR analyses show that LDP-3 transcripts are expressed in almost all mouse tissues examined. In vitro analyses using several substrates and inhibitors indicate that LDP-3 possesses intrinsic dual-specificity phosphatase activity. When expressed in mammalian cells, LDP-3 protein is localized mainly to the apical submembrane area. Forced expression of LDP-3 does not alter activation of ERK (extracellular-signal-regulated kinase), but rather enhances activation of JNK (c-Jun N-terminal kinase) and p38 and their respective upstream kinases MKK4 (mitogen-activated protein kinase kinase 4) and MKK6 in cells treated with 0.4 M sorbitol. By screening with a variety of stimuli, we found that LDP-3 specifically enhances the osmotic stress-induced activation of JNK and p38.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Sequência de Aminoácidos , Animais , Células COS/enzimologia , Linhagem Celular , Chlorocebus aethiops , Fosfatases de Especificidade Dupla , Ativação Enzimática/genética , Ativação Enzimática/fisiologia , Humanos , MAP Quinase Quinase Quinase 4/metabolismo , Camundongos , Proteína Quinase 6 Ativada por Mitógeno/metabolismo , Dados de Sequência Molecular , Peso Molecular , Mutação/genética , Mutação/fisiologia , Pressão Osmótica , Proteínas Tirosina Fosfatases/genética , Especificidade por Substrato , Transfecção/métodos
10.
J Biol Chem ; 278(34): 32448-56, 2003 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-12794087

RESUMO

We previously showed that MKP-7 suppresses MAPK activation in COS-7 cells in the order of selectivity, JNK >> p38 > ERK, but interacts with ERK as well as JNK and p38. In this study we found that, when expressed in COS-7 cells with HA-ERK2, the mobility of FLAG-MKP-7 was decreased on SDS-PAGE gels depending on several stimuli, including phorbol 12-myristate 13-acetate, fetal bovine serum, epidermal growth factor, H2O2, and ionomycin. By using U0126, a MEK inhibitor, and introducing several point mutations, we demonstrated that this upward mobility shift is because of phosphorylation and identified Ser-446 of MKP-7 as the phosphorylation site targeted by ERK activation. To determine how MKP-7 interacts with MAPKs, we identified three domains in MKP-7 required for interaction with MAPKs, namely, putative MAP kinase docking domains (D-domain) I and II and a long COOH-terminal stretch unique to MKP-7. The D-domain I is required for interaction with ERK and p38, whereas the D-domain II is required for interaction with JNK and p38, which is likely to be important for MKP-7 to suppress JNK and p38 activations. The COOH-terminal stretch of MKP-7 was shown to determine JNK preference for MKP-7 by masking MKP-7 activity toward p38 and is a domain bound by ERK. These data strongly suggested that Ser-446 of MKP-7 is phosphorylated by ERK.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Serina/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Catálise , Fosfatases de Especificidade Dupla , Células HeLa , Humanos , Fosfatases da Proteína Quinase Ativada por Mitógeno , Dados de Sequência Molecular , Fosforilação , Proteínas Tirosina Fosfatases/química , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...