Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
PDA J Pharm Sci Technol ; 76(5): 369-383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35031541

RESUMO

The threshold of toxicological concern (TTC), i.e., the dose of a compound lacking sufficient experimental toxicity data that is unlikely to result in an adverse health effect in humans, is important for evaluating extractables and leachables (E&Ls) as it guides analytical testing and minimizes the use of animal studies. The Extractables and Leachables Safety Information Exchange (ELSIE) consortium, which consists of member companies that span biotechnology, pharmaceutical, and medical device industries, brought together subject matter expert toxicologists to derive TTC values for organic, non-mutagenic E&L substances when administered parenterally. A total of 488 E&L compounds from the ELSIE database were analyzed and parenteral point of departure (PPOD) estimates were derived for 252 compounds. The PPOD estimates were adjusted to extrapolate to subacute, subchronic, and chronic durations of nonclinical exposure and the lower fifth percentiles were calculated. An additional 100-fold adjustment factor to account for nonclinical species and human variability was subsequently applied to derive the parenteral TTC values for E&Ls. The resulting parenteral TTC values are 35, 110, and 180 µg/day for human exposures of >10 years to lifetime, >1-10 years, and ≤1 year, respectively. These parenteral TTCs are expected to be conservative for E&Ls that are considered non-mutagenic per ICH M7(R1) guidelines.


Assuntos
Biotecnologia , Nutrição Parenteral , Animais , Humanos , Preparações Farmacêuticas
3.
Regul Toxicol Pharmacol ; 120: 104843, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33340644

RESUMO

This study assesses whether currently available acute oral toxicity (AOT) in silico models, provided by the widely employed Leadscope software, are fit-for-purpose for categorization and labelling of chemicals. As part of this study, a large data set of proprietary and marketed compounds from multiple companies (pharmaceutical, plant protection products, and other chemical industries) was assembled to assess the models' performance. The absolute percentage of correct or more conservative predictions, based on a comparison of experimental and predicted GHS categories, was approximately 95%, after excluding a small percentage of inconclusive (indeterminate or out of domain) predictions. Since the frequency distribution across the experimental categories is skewed towards low toxicity chemicals, a balanced assessment was also performed. Across all compounds which could be assigned to a well-defined experimental category, the average percentage of correct or more conservative predictions was around 80%. These results indicate the potential for reliable and broad application of these models across different industrial sectors. This manuscript describes the evaluation of these models, highlights the importance of an expert review, and provides guidance on the use of AOT models to fulfill testing requirements, GHS classification/labelling, and transportation needs.


Assuntos
Simulação por Computador , Citotoxinas/toxicidade , Colaboração Intersetorial , Rotulagem de Produtos/classificação , Rotulagem de Produtos/normas , Relação Quantitativa Estrutura-Atividade , Administração Oral , Alternativas aos Testes com Animais/classificação , Alternativas aos Testes com Animais/métodos , Alternativas aos Testes com Animais/normas , Animais , Indústria Química/classificação , Indústria Química/normas , Simulação por Computador/tendências , Citotoxinas/administração & dosagem , Citotoxinas/química , Bases de Dados Factuais , Indústria Farmacêutica/classificação , Indústria Farmacêutica/normas , Humanos
4.
Environ Mol Mutagen ; 60(9): 766-777, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31335992

RESUMO

Arylboronic acids and esters (referred to collectively as arylboronic compounds) are commonly used intermediates in the synthesis of pharmaceuticals but pose a challenge for chemical syntheses because they are often positive for bacterial mutagenicity in vitro. As such, arylboronic compounds are then typically controlled to levels that are acceptable for mutagenic impurities, that is, the threshold of toxicological concern (TTC). This study used ICH M7 guidance to design and conduct a testing strategy to investigate the in vivo relevance of the in vitro positive findings of arylboronic compounds. Eight arylboronic compounds representing a variety of chemical scaffolds were tested in Sprague Dawley and/or Wistar rats in the in vivo Pig-a (peripheral blood reticulocytes and mature red blood cells) and/or comet assays (duodenum and/or liver). Five of the eight compounds were also tested in the micronucleus (peripheral blood) assay. The arylboronic compounds tested orally demonstrated high systemic exposure; thus the blood and bone marrow were adequately exposed to test article. One compound was administered intravenously due to formulation stability issues. This investigation showed that arylboronic compounds that were mutagenic in vitro were not found to be mutagenic in the corresponding in vivo assays. Therefore, arylboronic compounds similar to the scaffolds tested in this article may be considered non-mutagenic and managed in accordance with the ICH Q3A/Q3B guidelines. Environ. Mol. Mutagen. 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
Ácidos Borônicos/toxicidade , Ésteres/toxicidade , Mutagênicos/toxicidade , Animais , Medula Óssea/efeitos dos fármacos , Ensaio Cometa/métodos , Duodeno/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Fígado/diagnóstico por imagem , Masculino , Testes para Micronúcleos/métodos , Mutagênese/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Reticulócitos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...